MECHANICAL ENGINEER'S DATA HANDBOOK

JAMES CARVILL
Mechanical Engineer’s Data Handbook
To my daughters, Helen and Sarah
Mechanical Engineer’s Data Handbook

J. Carvill
Contents

Preface
- vii

Symbols used in text
- ix

1. Strength of materials
1.1 Types of stress 1
1.2 Strength of fasteners 8
1.3 Fatigue and stress concentration 17
1.4 Bending of beams 24
1.5 Springs 32
1.6 Shafts 38
1.7 Struts 46
1.8 Cylinders and hollow spheres 48
1.9 Contact stress 51
1.10 Flat plates 53

2. Applied mechanics
2.1 Basic mechanics 56
2.2 Belt drives 65
2.3 Balancing 68
2.4 Miscellaneous machine elements 70
2.5 Automobile mechanics 77
2.6 Vibrations 79
2.7 Friction 83
2.8 Brakes, clutches and dynamometers .. 87
2.9 Bearings 90
2.10 Gears 95

3. Thermodynamics and heat transfer
3.1 Heat 102
3.2 Perfect gases 102
3.3 Vapours 106
3.4 Data tables 107
3.5 Flow through nozzles 111
3.6 Steam plant 112
3.7 Steam turbines 114
3.8 Gas turbines 116
3.9 Heat engine cycles 118
3.10 Reciprocating spark ignition internal combustion engines 120
3.11 Air compressors 124
3.12 Reciprocating air motor 126
3.13 Refrigerators 127
3.14 Heat transfer 128
3.15 Heat exchangers 137
3.16 Combustion of fuels 139

4. Fluid mechanics
4.1 Hydrostatics 146
4.2 Flow of liquids in pipes and ducts ... 148
4.3 Flow of liquids through various devices 152
4.4 Viscosity and laminar flow 155
4.5 Fluid jets 157
4.6 Flow of gases 160
4.7 Fluid machines 165

5. Manufacturing technology
5.1 General characteristics of metal processes 172
5.2 Turning 173
5.3 Drilling and reaming 178
5.4 Milling 182
5.5 Grinding 188
5.6 Cutting-tool materials 189
5.7 General information on metal cutting 192
5.8 Casting 196
5.9 Metal forming processes 199
5.10 Soldering and brazing 205
5.11 Gas welding 207
5.12 Arc welding 210
5.13 Limits and fits 216

6. Engineering materials
6.1 Cast irons 218
6.2 Carbon steels 219
6.3 Alloy steels 221
6.4 Stainless steels 225
6.5 British Standard specification of steels 228
6.6 Non-ferrous metals 228
6.7 Miscellaneous metals 233
6.8 Spring materials 235
6.9 Powdered metals 236
6.10 Low-melting-point alloys 236
6.11 Miscellaneous information on metals 237
6.12 Corrosion of metals 240
6.13 Plastics 242
6.14 Elastomers 248
6.15 Wood 250
6.16 Adhesives 251
6.17 Composites 257
6.18 Ceramics 259
6.19 Cermets 259
6.20 Materials for special requirements 260
6.21 Miscellaneous information 263

7. Engineering measurements 267
7.1 Length measurement 267
7.2 Angle measurement 270
7.3 Strain measurement 271

7.4 Temperature measurement 274
7.5 Pressure measurement 279
7.6 Flow measurement 281
7.7 Velocity measurement 283
7.8 Rotational-speed measurement 284
7.9 Materials-testing measurements 285

8. General data 288
8.1 Units and symbols 288
8.2 Fasteners 293
8.3 Engineering stock 304
8.4 Miscellaneous data 308

Glossary of terms 311

Index 330
Preface

There are several good mechanical engineering data books on the market but these tend to be very bulky and expensive, and are usually only available in libraries as reference books.

The Mechanical Engineer’s Data Handbook has been compiled with the express intention of providing a compact but comprehensive source of information of particular value to the engineer whether in the design office, drawing office, research and development department or on site. It should also prove to be of use to production, chemical, mining, mineral, electrical and building services engineers, and lecturers and students in universities, polytechnics and colleges. Although intended as a personal handbook it should also find its way into the libraries of engineering establishments and teaching institutions.

The Mechanical Engineer’s Data Handbook covers the main disciplines of mechanical engineering and incorporates basic principles, formulae for easy substitution, tables of physical properties and much descriptive matter backed by numerous illustrations. It also contains a comprehensive glossary of technical terms and a full index for easy cross-reference.

I would like to thank my colleagues at the University of Northumbria, at Newcastle, for their constructive suggestions and useful criticisms, and my wife Anne for her assistance and patience in helping me to prepare this book.

J. Carvill
Symbols used in text

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Acceleration</td>
</tr>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>a</td>
<td>Anergy</td>
</tr>
<tr>
<td>b</td>
<td>Breadth</td>
</tr>
<tr>
<td>b.p.</td>
<td>Boiling point</td>
</tr>
<tr>
<td>B</td>
<td>Breadth, flux density</td>
</tr>
<tr>
<td>c</td>
<td>Clearance, depth of cut; specific heat capacity</td>
</tr>
<tr>
<td>C</td>
<td>Couple; Spring coil index; velocity (thermodynamics); heat capacity</td>
</tr>
<tr>
<td>C_d</td>
<td>Drag coefficient, discharge coefficient</td>
</tr>
<tr>
<td>COP</td>
<td>Coefficient of performance</td>
</tr>
<tr>
<td>C_p</td>
<td>Specific heat at constant pressure</td>
</tr>
<tr>
<td>C_s</td>
<td>Specific heat at constant volume; velocity coefficient</td>
</tr>
<tr>
<td>CV</td>
<td>Calorific value</td>
</tr>
<tr>
<td>d</td>
<td>Depth; depth of cut; diameter; deceleration</td>
</tr>
<tr>
<td>D</td>
<td>Depth; diameter; flexural rigidity</td>
</tr>
<tr>
<td>e</td>
<td>Strain; coefficient of restitution; emissivity</td>
</tr>
<tr>
<td>E</td>
<td>Young's Modulus; energy; luminance; effort</td>
</tr>
<tr>
<td>EL</td>
<td>Elastic limit; endurance limit</td>
</tr>
<tr>
<td>ELONG%</td>
<td>Percentage elongation</td>
</tr>
<tr>
<td>ε</td>
<td>Exergy</td>
</tr>
<tr>
<td>f</td>
<td>Frequency; friction factor; feed</td>
</tr>
<tr>
<td>F</td>
<td>Force; luminous flux</td>
</tr>
<tr>
<td>F_s</td>
<td>Strain gauge factor</td>
</tr>
<tr>
<td>FL</td>
<td>Fatigue limit</td>
</tr>
<tr>
<td>FS</td>
<td>Factor of safety</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity</td>
</tr>
<tr>
<td>G</td>
<td>Shear modulus; Gravitational constant</td>
</tr>
<tr>
<td>G_r</td>
<td>Grashof number</td>
</tr>
<tr>
<td>h</td>
<td>Height; thickness; specific enthalpy; shear, heat transfer coefficient</td>
</tr>
<tr>
<td>h.t.c.</td>
<td>Heat transfer coefficient</td>
</tr>
<tr>
<td>H</td>
<td>Enthalpy; height, magnetic field strength</td>
</tr>
<tr>
<td>i</td>
<td>Slope; operator $\sqrt{-1}$</td>
</tr>
<tr>
<td>I</td>
<td>Moment of inertia; Second moment of area; luminous intensity, electric current</td>
</tr>
<tr>
<td>j</td>
<td>Operator $\sqrt{-1}$</td>
</tr>
<tr>
<td>J</td>
<td>Polar second moment of area</td>
</tr>
<tr>
<td>k</td>
<td>Radius of gyration; coefficient of thermal conductivity; pipe roughness</td>
</tr>
<tr>
<td>K</td>
<td>Bulk modulus; stress concentration factor</td>
</tr>
<tr>
<td>KE</td>
<td>Kinetic energy</td>
</tr>
<tr>
<td>K_w</td>
<td>Wahl factor for spring</td>
</tr>
<tr>
<td>l</td>
<td>Length</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>m</td>
<td>Mass; mass per unit length; module of gear</td>
</tr>
<tr>
<td>m.p.</td>
<td>Melting point</td>
</tr>
<tr>
<td>M</td>
<td>Mass; moment; bending moment; molecular weight</td>
</tr>
<tr>
<td>MA</td>
<td>Mechanical advantage</td>
</tr>
<tr>
<td>n</td>
<td>Index of expansion; index; number of; rotational speed</td>
</tr>
<tr>
<td>N</td>
<td>Rotational speed; number of</td>
</tr>
<tr>
<td>N_s</td>
<td>Specific speed</td>
</tr>
<tr>
<td>N_u</td>
<td>Nusselt number</td>
</tr>
<tr>
<td>p</td>
<td>Pressure; pitch</td>
</tr>
<tr>
<td>P</td>
<td>Power; force; perimeter</td>
</tr>
<tr>
<td>P_r</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>PE</td>
<td>Potential energy</td>
</tr>
<tr>
<td>PS</td>
<td>Proof stress</td>
</tr>
<tr>
<td>Q</td>
<td>Heat quantity; volume flow rate; metal removal rate</td>
</tr>
<tr>
<td>r</td>
<td>Radius; pressure or volume ratio</td>
</tr>
<tr>
<td>R</td>
<td>Radius; electric resistance; reaction, thermal resistance; gas constant</td>
</tr>
<tr>
<td>R_e</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>RE</td>
<td>Refrigeration effect</td>
</tr>
<tr>
<td>R_u</td>
<td>Universal gas constant</td>
</tr>
<tr>
<td>s</td>
<td>Specific entropy; stiffness</td>
</tr>
<tr>
<td>S</td>
<td>Entropy, shear force, thermoelectric sensitivity</td>
</tr>
<tr>
<td>SE</td>
<td>Strain energy</td>
</tr>
<tr>
<td>S_t</td>
<td>Stanton number</td>
</tr>
<tr>
<td>t</td>
<td>Temperature; thickness; time</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>T</td>
<td>Time; temperature; torque; tension; thrust; number of gear teeth</td>
</tr>
<tr>
<td>TS</td>
<td>Tensile strength</td>
</tr>
<tr>
<td>u</td>
<td>Velocity; specific strain energy; specific internal energy</td>
</tr>
<tr>
<td>U</td>
<td>Internal energy; strain energy; overall heat transfer coefficient</td>
</tr>
<tr>
<td>UTS</td>
<td>Ultimate tensile stress</td>
</tr>
<tr>
<td>v</td>
<td>Velocity; specific volume</td>
</tr>
<tr>
<td>V</td>
<td>Velocity; voltage, volume</td>
</tr>
<tr>
<td>VR</td>
<td>Velocity ratio</td>
</tr>
<tr>
<td>w</td>
<td>Weight; weight per unit length</td>
</tr>
<tr>
<td>W</td>
<td>Weight; load; work; power (watts)</td>
</tr>
<tr>
<td>x</td>
<td>Distance (along beam); dryness fraction</td>
</tr>
<tr>
<td>X</td>
<td>Parameter (fluid machines)</td>
</tr>
<tr>
<td>y</td>
<td>Deflection</td>
</tr>
<tr>
<td>YP</td>
<td>Yield point</td>
</tr>
<tr>
<td>YS</td>
<td>Yield stress</td>
</tr>
<tr>
<td>Z</td>
<td>Bending modulus; impedance; number of Z_p</td>
</tr>
<tr>
<td>Z_p</td>
<td>Polar modulus</td>
</tr>
</tbody>
</table>

α, β, γ, δ, ϵ, η, θ, λ, μ, ν, ρ, ρ_α, σ, τ, ϕ, ω, θ, λ, μ, ν, ρ, ρ_α, σ, τ, ϕ, ω.
Strengths of materials

1.1 Types of stress

Engineering design involves the correct determination of the sizes of components to withstand the maximum stress due to combinations of direct, bending and shear loads. The following deals with the different types of stress and their combinations. Only the case of two-dimensional stress is dealt with, although many cases of three-dimensional stress combinations occur. The theory is applied to the special case of shafts under both torsion and bending.

1.1.1 Direct, shear and bending stress

Tensile and compressive stress (direct stresses)

- Stress $\sigma = \frac{P}{A}$
 - Strain $e = \frac{\delta x}{L}$
 - Stress $\frac{e}{e}$ = Young's modulus, E. Thus $E = \frac{PL}{Ax}$

Shear stress

- Shear stress $\tau = \frac{P}{A}$
 - Shear strain $\phi = \frac{\tau}{G}$, where G = Shear modulus.
 - $G = \frac{PL}{Ax}$
 - Note: A is parallel to the direction of P.

Poisson's ratio

- Poisson's ratio $\nu = \frac{\text{strain in direction of load}}{\text{strain at right angles to load}}$
 - $\nu = \frac{\delta B}{\delta L}$
 - $\delta B = e_b$, $\delta L = e_L$
 - Note: if e_L is positive, e_b is negative.
Bending stress

Bending stress \(\sigma = \frac{My}{l} \)

where:
- \(M \) = bending moment
- \(l \) = second moment of area of section
- \(y \) = distance from centroid to the point considered

Maximum stress \(\sigma_m = \frac{My_m}{l} \)

where \(y_m \) = maximum value of \(y \) for tensile and compressive stress.

Radius of curvature \(R = \frac{EI}{M} \)

Bending modulus \(Z = l/y_m \) and \(\sigma_m = M/Z \)

Combined bending and direct stresses

\(\sigma_e = P/A \pm M/Z \) where \(Z = \frac{l}{y_m} \)

Hydrostatic (three-dimensional) stress

Volumetric strain \(e_v = \frac{\sigma V}{V} \)

Bulk modulus \(K = p/e_v \)

where \(p \) = pressure and \(V \) = volume.

Relationship between elastic constants

\(K = \frac{E}{3(1 - 2\nu)} \); \(G = \frac{E}{2(1 + \nu)} \); \(E = \frac{9GK}{(G + 3K)} \)

Compound stress

For normal stresses \(\sigma_x \) and \(\sigma_y \) with shear stress \(\tau \):

Maximum principal stress \(\sigma_1 = (\sigma_x + \sigma_y)/2 + \tau_{\text{max}} \)

Minimum principal stress \(\sigma_2 = (\sigma_x + \sigma_y)/2 - \tau_{\text{max}} \)

where: maximum shear stress \(\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau^2} \)

Combined bending and torsion

For solid and hollow circular shafts the following can be derived from the theory for two-dimensional (Compound) stress. If the shaft is subject to bending moment

\(\theta = \frac{1}{2} \tan^{-1} \left(\frac{2\tau}{\sigma_x - \sigma_y} \right) \)
M and torque T, the maximum direct and shear stresses, \(\sigma_m \) and \(\tau_m \) are equal to those produced by 'equivalent' moments \(M_e \) and \(T_e \) where

\[
\tau_m = \frac{T_e}{Z_p} \quad \text{and} \quad \sigma_m = \frac{M_e}{Z}
\]

where \(Z_p = \) polar modulus

\[
T_e = \sqrt{M^2 + T^2} \quad \text{and} \quad M_e = \frac{(M + T)}{2}
\]

\[
Z = \frac{\pi D^3}{32} \quad \text{(solid shaft)} \quad \text{or} \quad \frac{\pi}{32} \frac{(D^4 - d^4)}{D} \quad \text{(hollow shaft)}
\]

\[
Z_p = \frac{\pi D^3}{16} \quad \text{(solid shaft)} \quad \text{or} \quad \frac{\pi}{16} \frac{(D^4 - d^4)}{D} \quad \text{(hollow shaft)}
\]

See section 1.1.7.

1.1.2 Impact stress

In many components the load may be suddenly applied to give stresses much higher than the steady stress. An example of stress due to a falling mass is given.

Maximum tensile stress in bar

\[
\sigma_m = \sigma_s \left[1 + \sqrt{1 + \left(\frac{2h}{x_s} \right)} \right]
\]

where:

- \(\sigma_s = \) steady stress \(= \frac{mg}{A} \)
- \(x_s = \) steady extension \(= \frac{mgL}{AE} \)
- \(h = \) height fallen by mass \(m \).

Stress due to a 'suddenly applied' load \((h=0) \)

\[
\sigma_m = 2\sigma_s
\]

Stress due to a mass \(M \) moving at velocity \(v \)

\[
\sigma_m = v \sqrt{\frac{mE}{AL}}
\]

1.1.3 Compound bar in tension

A compound bar is one composed of two or more bars of different materials rigidly joined. The stress when loaded depends on the cross-sectional areas \((A_a \text{ and } A_b) \) areas and Young's moduli \((E_a \text{ and } E_b) \) of the components.

Stresses

\[
\sigma_a = \frac{F}{A_a + \left(\frac{E_b}{E_a} \right) A_b}
\]

\[
\sigma_b = \frac{F}{A_a + \left(\frac{E_b}{E_a} \right) A_b}
\]
Strains

\[e_a = \frac{\sigma_a}{E_a}; \quad e_b = \frac{\sigma_b}{E_b} \]
(note that \(e_a = e_b \))

1.1.4 Stresses in knuckle joint

The knuckle joint is a good example of the application of simple stress calculations. The various stresses which occur are given.

Symbols used:

- \(P \) = load
- \(\sigma_a \) = tensile stress
- \(\sigma_b \) = bending stress
- \(\sigma_c \) = crushing stress
- \(\tau \) = shear stress
- \(D \) = rod diameter
- \(D_p \) = pin diameter
- \(D_o \) = eye outer diameter
- \(a \) = thickness of the fork
- \(b \) = the thickness of the eye

Failure may be due to any one of the following stresses.

1. Tensile in rod \(\sigma_i = \frac{4P}{\pi D^2} \)

2. Tensile in eye \(\sigma_i = \frac{P}{(D_o - D_p)b} \)

3. Shear in eye \(\tau = \frac{P}{(D_o - D_p)b} \)

4. Tensile in fork \(\sigma_i = \frac{P}{(D_o - D_p)2a} \)

5. Shear in fork \(\tau = \frac{P}{(D_o - D_p)2a} \)
1.1.5 *Theories of failure*

For one-dimensional stress the factor of safety (FS) based on the elastic limit is simply given by

\[
FS = \frac{\text{Elastic limit}}{\text{Actual stress}}
\]

When a two- or three-dimensional stress system exists, determination of FS is more complicated and depends on the type of failure assumed and on the material used.

Symbols used:

- \(\sigma_{\text{el}} \) = elastic limit in simple tension
- \(\sigma_1, \sigma_2, \sigma_3 \) = maximum principal stresses in a three-dimensional system
- FS = factor of safety based on \(\sigma_{\text{el}} \)
- \(v \) = Poisson’s ratio

Maximum principal stress theory (used for brittle metals)

\[
FS = \text{smallest of } \frac{\sigma_{\text{el}}}{\sigma_1}, \frac{\sigma_{\text{el}}}{\sigma_2}, \text{ and } \frac{\sigma_{\text{el}}}{\sigma_3}
\]

Maximum shear stress theory (used for ductile metals)

\[
FS = \text{smallest of } \frac{\sigma_{\text{el}}}{(\sigma_1 - \sigma_2)}, \frac{\sigma_{\text{el}}}{(\sigma_1 - \sigma_3)}, \text{ and } \frac{\sigma_{\text{el}}}{(\sigma_2 - \sigma_3)}
\]

Strain energy theory (used for ductile metals)

\[
FS = \sigma_{\text{el}}/\sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 2v(\sigma_1\sigma_2 + \sigma_2\sigma_3 + \sigma_3\sigma_1)}
\]

Shear strain energy theory (best theory for ductile metals)

\[
FS = \sigma_{\text{el}}/\sqrt{[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]/2}
\]
Maximum principal strain theory (used for special cases)

FS = smallest of \(\sigma_{yy}/(\sigma_1 - \nu \sigma_2 - \nu \sigma_3) \),
\(\sigma_{xy}/(\sigma_2 - \nu \sigma_1 - \nu \sigma_3) \) and
\(\sigma_{xz}/(\sigma_3 - \nu \sigma_2 - \nu \sigma_1) \)

Example

In a three-dimensional stress system, the stresses are
\(\sigma_1 = 40 \text{ MN m}^{-2} \), \(\sigma_2 = 20 \text{ MN m}^{-2} \) and \(\sigma_3 = -10 \text{ MN m}^{-2} \). \(\sigma_{xy} = 200 \text{ MN m}^{-2} \) and \(\nu = 0.3 \). Calculate the factors of safety for each theory.

Answer: (a) 5.0; (b) 4.0; (c) 4.5; (d) 4.6; (e) 5.4.

1.1.6 Strain energy (Resilience)

Strain energy \(U \) is the energy stored in the material of a component due to the application of a load. Resilience \(u \) is the strain energy per unit volume of material.

Tension and compression

Strain energy \(U = \frac{Fx}{2} = \frac{\sigma^2 AL}{2E} \)

Resilience \(U = \frac{\sigma^2}{2E} \)

Shear

Resilience \(U = \frac{\tau^2}{2G} \)

The units for \(U \) and \(u \) are joules and joules per cubic metre.

1.1.7 Torsion of various sections

Formulae are given for stress and angle of twist for a solid or hollow circular shaft, a rectangular bar, a thin tubular section, and a thin open section. The hollow shaft size equivalent in strength to a solid shaft is given for various ratios of bore to outside diameter.

Solid circular shaft

Maximum shear stress \(\tau_m = \frac{16T}{\pi D^3} \)

where: \(D = \) diameter, \(T = \) torque.

Hollow circular shaft

\(\tau_m = \frac{16TD}{\pi(D^4 - d^4)}, T = \frac{\pi(D^4 - d^4)}{16D} \)

where: \(D = \) outer diameter, \(d = \) inner diameter.

\(P = \frac{\pi^2N(D^4 - d^4)\tau_m}{8D}, \theta = \frac{32TL}{\pi G(D^4 - d^4)} \)

Rectangular section bar

For \(d > b \):

\(\tau_m = \frac{(1.8b + 3d)T}{b^2d^2} \) (at middle of side \(d \))

\(\theta = \frac{7TL(b^2 + d^2)}{2Gb^3 d^3} \)
Thin tubular section

\[\tau_m = \frac{T}{2tA}; \ \theta = \frac{TpL}{4A^2tG} \]

where:
- \(t \): thickness
- \(A \): area enclosed by mean perimeter
- \(p \): mean perimeter

Thin rectangular bar and thin open section

\[\tau_m = \frac{3T}{dt^2}; \ \theta = \frac{3TL}{Gdt^3} \text{ (rectangle)} \]

\[\tau_m = \frac{3T}{\Sigma dt^2}; \ \theta = \frac{3TL}{G \Sigma dt^3} \text{ (general case)} \]

\[\Sigma dt^2 = (d_1t_1^2 + d_2t_2^2 + \cdots) \]

\[\Sigma dt^3 = (d_1t_1^3 + d_2t_2^3 + \cdots) \]

Strain energy in torsion

Strain energy \(U = \frac{1}{2}T\theta \)

for solid circular shaft\(u = \frac{\tau_m^2}{4G} \)

for hollow circular shaft\(u = \frac{\tau_m^2}{4G} \left(\frac{D^2 + d^2}{D^2} \right) \)

where \(U = \frac{\pi D^2L}{4} \) solid shaft

\(u = \frac{\pi(D^2 - d^2)L}{4} \) hollow shaft

Torsion of hollow shaft

For a hollow shaft to have the same strength as an equivalent solid shaft:

\[D_o/D_s = \sqrt[3]{1 - k^2}; \ W_b/W_s = \frac{1 - k^2}{3(1 - k^2)^2} \]

\[\theta_b/\theta_s = \sqrt[3]{1 - k^2} \]

\[k = D_o/D_s \]

where:
- \(D_o, D_s, D_i \): solid, outer and inner diameters
- \(W_s, W_s \): weights of hollow and solid shafts
- \(\theta_h, \theta_s \): angles of twist of hollow and solid shafts

<table>
<thead>
<tr>
<th>(k)</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_o/D_s)</td>
<td>1.02</td>
<td>1.047</td>
<td>1.095</td>
<td>1.192</td>
<td>1.427</td>
</tr>
<tr>
<td>(W_b/W_s)</td>
<td>0.783</td>
<td>0.702</td>
<td>0.613</td>
<td>0.516</td>
<td>0.387</td>
</tr>
<tr>
<td>(\theta_b/\theta_s)</td>
<td>0.979</td>
<td>0.955</td>
<td>0.913</td>
<td>0.839</td>
<td>0.701</td>
</tr>
</tbody>
</table>
1.2 Strength of fasteners

1.2.1 Bolts and bolted joints

Bolts, usually in conjunction with nuts, are the most widely used non-permanent fastening. The bolt head is usually hexagonal but may be square or round. The shank is screwed with a vee thread for all or part of its length.

In the UK, metric (ISOM) threads have replaced Whitworth (BSW) and British Standard Fine (BSF) threads. British Association BA threads are used for small sizes and British Standard Pipe BSP threads for pipes and pipe fittings. In the USA the most common threads are designated ‘unified fine’ (UNF) and ‘unified coarse’ (UNC).

Materials

Most bolts are made of low or medium carbon steel by forging or machining and the threads are formed by cutting or rolling. Forged bolts are called ‘black’ and machined bolts are called ‘bright’. They are also made in high tensile steel (HT bolts), alloy steel, stainless steel, brass and other metals.

Nuts are usually hexagonal and may be bright or black. Typical proportions and several methods of locking nuts are shown.

Bolted joints

A bolted joint may use a ‘through bolt’, a ‘tap bolt’ or a ‘stud’.

Socket head bolts

Many types of bolt with a hexagonal socket head are used. They are made of high tensile steel and require a special wrench.

Symbols used:

- $D =$ outside or major diameter of thread
- $L =$ Length of shank
- $T =$ Length of thread
- $H =$ height of head
- $F =$ distance across flats
- $C =$ distance across corners
- $R =$ radius of fillet under head
- $B =$ bearing diameter

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>D</th>
<th>H</th>
<th>F</th>
<th>Coarse</th>
<th>Fine</th>
</tr>
</thead>
<tbody>
<tr>
<td>M10</td>
<td>10</td>
<td>7</td>
<td>17</td>
<td>1.5</td>
<td>1.25</td>
</tr>
<tr>
<td>M12</td>
<td>12</td>
<td>8</td>
<td>19</td>
<td>1.75</td>
<td>1.25</td>
</tr>
<tr>
<td>M16</td>
<td>16</td>
<td>10</td>
<td>24</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>M20</td>
<td>20</td>
<td>13</td>
<td>30</td>
<td>2.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>
STRENGTHS OF MATERIALS

Stud (stud bolt)

Stud application

Studding

Stud and application

Locked nuts (jam nuts)

Hexagon socket head screw

Typical metric sizes (mm):

- D = 10.0, R = 0.6
- A = 16.0, F = 8.0
- H = 10.0, K = 5.5

L/T according to application

Spring lock nut (compression stop nut)

Elastic stop nut (Nyloc nut)
Bolted joint in tension

The bolt shown is under tensile load plus an initial tightening load. Three members are shown bolted together but the method can be applied to any number of members.

Symbols used:

- P_e: external load
- P_t: tightening load
- P: total load
- A: area of a member (A_1, A_2, etc.)
- A_b: bolt cross-sectional area
- t: thickness of a member (t_1, t_2, etc.)
- L: length of bolt
- E: Young's modulus (E_b, E_t, etc.)
- x: deflection of member per unit load
- x_b: deflection of bolt per unit load
- D: bolt diameter
- D_r: bolt thread root diameter
- A_r: area at thread root
- T: bolt tightening torque

$$x_b = \frac{L}{A_b E_b}; \quad x_1 = \frac{t_1}{A_1 E_1}; \quad x_2 = \frac{t_2}{A_2 E_2}; \quad \text{etc.}$$

$$P = P_t + P_e \frac{\Sigma x}{\Sigma x + x_b}$$

Approximate dimensions of bolt heads and nuts (ISO metric precision)

Exact sizes are obtained from tables.

- $c = 2d$
- $s = 1.73d$
- $m = 0.8d$
- $t = 0.6d$

Tightening load

(a) Hand tightening:

$$P_t = kD$$
where:
\[k = 1500 \text{ to } 3000; \ P_i \text{ is in newtons and } D \text{ is in millimetres.} \]

(b) Torque-wrench tightening:
\[P_i = \frac{T}{0.2D} \]

Shear stress in bolt
\[\tau_{\text{max}} = \sqrt{\left(\frac{P}{2A} \right)^2 + \left(\frac{16T}{\pi D^3} \right)^2} \]

1.2.2 Bolted or riveted brackets - stress in bolts

Bracket in torsion

Force on a bolt at \(r_i \) from centroid of bolt group
\[P_i = \frac{P}{a_1 + r_1^2 + r_2^2 + \ldots} \]

Vertical force on each bolt \(P_i = \frac{P}{n} \)
where: \(n \) = number of bolts.

Total force on a bolt \(P_i = \) vector sum of \(P_i \) and \(P_v \)
Shear stress in bolt \(\tau = \frac{P_i}{A} \)
where: \(A \) = bolt area. This is repeated for each bolt and the greatest value of \(\tau \) is noted.

Bracket under bending moment

(a) Vertical load:
Tensile force on bolt at \(a_1 \) from pivot point
\[P_i = \frac{P}{a_i + \sigma_1^2 + \sigma_2^2 + \ldots} \]
Tensile stress \(\sigma_1 = \frac{P_i}{A} \)

(b) Horizontal load:
Maximum tensile stress \(\sigma_m = \sigma_1 + \frac{P_i}{\pi D} \) for bolt at \(a_1 \)

1.2.3 Bolts in shear

This deals with bolts in single and double shear. The crushing stress is also important.

Single shear
Shear stress \(\tau = \frac{4P}{\pi D^2} \)

Double shear
Shear stress \(\tau = \frac{2P}{\pi D^2} \)
Crushing stress
\[\sigma_c = \frac{P}{Dt} \]

1.2.4 Rivets and riveted joints in shear

Lap joint

Symbols used:
- \(t \) = plate thickness
- \(D \) = diameter of rivets
- \(L \) = distance from rivet centre to edge of plate
- \(p \) = pitch of rivets
- \(\sigma_p \) = allowable tensile stress in plate
- \(\sigma_b \) = allowable bearing pressure on rivet
- \(\tau_c \) = allowable shear stress in rivet
- \(\tau_p \) = allowable shear stress in plate
- \(P \) = load

Allowable load per rivet:
- Shearing of rivet \(P_1 = \tau_c \pi D^2 / 4 \)
- Shearing of plate \(P_2 = \tau_p 2Lt \)
- Tearing of plate \(P_3 = \sigma_b (p - D)t \)
- Crushing of rivet \(P_4 = \sigma_b Dt \)

Efficiency of joint:
\[\eta_1 = \frac{\text{least of } P_1 P_2 P_3 P_4}{\sigma_p Dt} \times 100\% \]

Butt joint

The rivet is in 'double shear', therefore \(P_1 = \tau_\pi D^2 / 2 \) per row.

In practice, \(P_1 \) is nearer to \(\tau_\pi \frac{3D^2}{8} \).

Several rows of rivets

The load which can be taken is proportional to the number of rows.

1.2.5 Strength of welds

A well-made 'butt weld' has a strength at least equal to that of the plates joined. In the case of a 'fillet weld' in shear the weld cross section is assumed to be a 45° right-angle triangle with the shear area at 45° to the plates. For transverse loading an angle of 67.5° is assumed as shown.

For brackets it is assumed that the weld area is flattened and behaves like a thin section in bending. For ease of computation the welds are treated as thin lines. Section 1.2.6 gives the properties of typical weld groups.

Since fillet welds result in discontinuities and hence stress concentration, it is necessary to use stress concentration factors when fluctuating stress is present.
Butt weld

The strength of the weld is assumed equal to that of the plates themselves.

Fillet weld

Parallel loading:
Shear stress \(\tau = F/tL \)
Weld throat \(t = 0.7w \)
where \(w = \) weld leg size.

Transverse loading:
Shear stress \(\tau = F/tL \)
Throat \(t = 0.77w \)

Welded bracket subject to torsion

Maximum shear stress due to moment \(\tau_b = M/Z \)
(an assumption)
where: \(M = \) bending moment.

Direct shear stress \(\tau_d = F/A \)
where: \(A = \) total area of weld at throat, \(F = \) load.

Resultant stress \(\tau = \sqrt{\tau_b^2 + \tau_d^2} \)
from which \(t \) is found.

Symbols used:
- \(I = \) second moment of area of weld group (treated as lines) = constant \(\times t \)
- \(Z = l/y_{\text{max}} = \) bending modulus
1.2.6 Properties of weld groups - welds treated as lines

Symbols used:
- Z = bending modulus about axis XX
- J = polar second moment of area
- t = weld throat size

1. $Z = d^2t/3; J = dt(3b^2 + d^2)/6$

2. $Z = bdt; J = bt(3d^2 + b^2)/6$

3. $Z = (4bd + d^2)t/6$ (at top); $J = [(b + d)^4 - 6b^2d^2]t / 12(b + d)$
 $Z = (4bd^2 + d^3)t / 6(2b + d)$ (at bottom); $x = d^2 / 2(b + d); y = b^2 / 2(b + d)$

4. $Z = (bd + d^2/6)t; J = [(2b + d)^3 - b^2(b + d)^2]t / 12(2b + d)$
 $y = b^2 / 2b + d$

5. $Z = (2bd + d^2)t/3$ (at top); $J = [(b + 2d)^3 - d^2(b + d)^2]t / 12(b + 2d)$
 $Z = d^2(2b + d)t / 3(b + d)$ (at bottom); $x = d^2 / b + 2d$
1.2.7 Stresses due to rotation

Flywheels are used to store large amounts of energy and are therefore usually very highly stressed. It is necessary to be able to calculate the stresses accurately. Formulae are given for the thin ring, solid disk, annular wheel and spoked wheel, and also the rotating thick cylinder.

Thin ring

Symbols used:
\(\rho \) = density
\(r \) = mean radius
\(v \) = tangential velocity = \(r \omega \)

Tangential stress \(\sigma_t = \rho v^2 = \rho r^2 \omega^2 \)

Solid disk

Maximum tangential and radial stress \(\sigma_r \)
\(\sigma_r = \sigma_r = \rho v^2(3+v)/8 \) at \(r = 0 \)
where: \(v \) = Poisson's ratio, \(v = r \omega \).
Annular wheel

For axial length assumed 'small':

\[\sigma_{t_{\text{max}}} = \rho v^2 \left(\frac{3+v}{4} \right) \left(1 + \frac{(1-v)}{r_1} \right) \] (at \(r_1 \))

\[\sigma_{r_{\text{max}}} = \rho v^2 \left(\frac{3+v}{8} \right) \left(1 - \frac{r_1^2}{r_2^2} \right) \] (at \(r = \sqrt{r_1 r_2} \))

where: \(v = r_2 \omega \)

Spoked wheel

Greatest tangential stress \(\sigma_t = \rho v^2 \)

\[\left[1 - \frac{\cos \theta}{3 \sin \alpha} \pm \frac{2r}{ct} \left(\frac{1}{\alpha} - \frac{\cos \theta}{\sin \alpha} \right) \right] \] at angle \(\theta \)

where: \(r = \text{mean radius of rim.} \)

<table>
<thead>
<tr>
<th>No. of spokes</th>
<th>Value of constant c</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(0.073 \left(\frac{r}{t} \right)^2 + 0.643 + \frac{A_t}{A_s})</td>
</tr>
<tr>
<td>6</td>
<td>(0.0203 \left(\frac{r}{t} \right)^2 + 0.957 + \frac{A_t}{A_s})</td>
</tr>
<tr>
<td>8</td>
<td>(0.0091 \left(\frac{r}{t} \right)^2 + 1.274 + \frac{A_t}{A_s})</td>
</tr>
</tbody>
</table>

Long thick cylinder

Maximum tangential stress

\[\sigma_t = \frac{\rho v^2}{4(1-v)} \left[(1-2v) + (3-2v) \left(\frac{r_1}{r_2} \right)^2 \right] \] (at \(r_1 \))

Maximum radial stress \(\sigma_r = \frac{\rho v^2 (3-2v)}{8(1-v)} \left(1 - \frac{r_1^2}{r_2^2} \right) \)

(at \(r = \sqrt{r_1 r_2} \))

Maximum axial stress \(\sigma_a = \frac{\rho v^2}{4(1-v)} \left[1 - \left(\frac{r_1}{r_2} \right)^2 \right] \)

(tensile at \(r_1 \), compressive at \(r_2 \))
1.3 Fatigue and stress concentration

In most cases failure of machine parts is caused by fatigue, usually at a point of high 'stress concentration', due to fluctuating stress. Failure occurs suddenly as a result of crack propagation without plastic deformation at a stress well below the elastic limit. The stress may be 'alternating', 'repeated', or a combination of these. Test specimens are subjected to a very large number of stress reversals to determine the 'endurance limit'. Typical values are given.

At a discontinuity such as a notch, hole or step, the stress is much higher than the average value by a factor K, which is known as the 'stress concentration factor'. The Soderberg diagram shows the alternating and steady stress components, the former being multiplied by K, in relation to a safe working line and a factor of safety.

1.3.1 Fluctuating stress

Alternating stress

The stress varies from σ_c, compressive to σ_t, tensile.

![Graph of alternating stress](image)

Repeated stress

The stress varies from zero to a maximum tensile or compressive stress, of magnitude $2\sigma_t$.

![Graph of repeated stress](image)

Combined steady and alternating stress

The average value is σ_m with a superimposed alternating stress of range σ_t.

![Graph of combined stress](image)

SN curves - endurance limit

The number of cycles N of alternating stress to cause failure and the magnitude of the stress σ_f are plotted. At $N=0$, failure occurs at σ_u, the ultimate tensile strength. At a lower stress σ_e, known as the 'endurance limit', failure occurs, in the case of steel, as N approaches infinity. In the case of non-ferrous metals, alloys and plastics, the curve does not flatten out and a 'fatigue stress' σ_{FS} for a finite number of stress reversals N' is specified.
Soderberg diagram (for steel)

Alternating stress is plotted against steady stress. Actual failures occur above the line PQ joining \(\sigma_u \) to \(\sigma_y \). PQ is taken as a failure line. For practical purposes the yield stress \(\sigma_y \) is taken instead of \(\sigma_u \) and a safety factor FS is applied to give a working line AB. A typical point on the line is C, where the steady stress component is \(\sigma_m \) and the alternating component is \(K\sigma_r \), where \(K \) is a 'stress concentration coefficient' which allows for discontinuities such as notches, holes, shoulders, etc. From the figure:

\[
FS = \frac{\sigma_y}{\sigma_m + (\sigma_y/\sigma_r)K\sigma_r}
\]

1.3.2 Endurance limit and fatigue stress for various materials

Steel

Most steels have an endurance limit which is about half the tensile strength. An approximation often used is as follows:

Endurance limit = 0.5 tensile strength up to a tensile strength of 1400 N mm\(^{-2}\)
Endurance limit = 700 N mm\(^{-2}\) above a tensile strength of 1400 N mm\(^{-2}\)

Cast iron and cast steel

Approximately:

Endurance limit = 0.45 \times \text{tensile strength} up to a tensile strength of 600 N mm\(^{-2}\)
Endurance limit = 275 N mm\(^{-2}\) above a tensile strength of 600 N mm\(^{-2}\).

Non-ferrous metals and alloys

There is no endurance limit and the fatigue stress is taken at a definite value of stress reversals, e.g. \(5 \times 10^7\). Some typical values are given.

<table>
<thead>
<tr>
<th>Steel</th>
<th>Condition</th>
<th>Tensile strength, (\sigma_u) (N mm(^{-2}))</th>
<th>Endurance limit, (\sigma_e) (N mm(^{-2}))</th>
<th>(\sigma_y/\sigma_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4% carbon</td>
<td>Normalized</td>
<td>540</td>
<td>270</td>
<td>0.50</td>
</tr>
<tr>
<td>(080M40)</td>
<td>Hardened and tempered</td>
<td>700</td>
<td>340</td>
<td>0.49</td>
</tr>
<tr>
<td>Carbon, manganese</td>
<td>Normalized</td>
<td>540</td>
<td>250</td>
<td>0.46</td>
</tr>
<tr>
<td>(150M19)</td>
<td>Hardened and tempered</td>
<td>700</td>
<td>325</td>
<td>0.53</td>
</tr>
<tr>
<td>3% Chrome</td>
<td>Hardened and tempered</td>
<td>1000</td>
<td>480</td>
<td>0.48</td>
</tr>
<tr>
<td>molybdenum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(709M40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring steel</td>
<td>Hardened and tempered</td>
<td>1500</td>
<td>650</td>
<td>0.43</td>
</tr>
<tr>
<td>(735A50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18,8 Stainless</td>
<td>Cold rolled</td>
<td>1200</td>
<td>490</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Wrought aluminium alloys

<table>
<thead>
<tr>
<th>Material</th>
<th>Tensile strength, σ_u (N mm$^{-2}$)</th>
<th>Fatigue stress, σ_{FS} (N mm$^{-2}$), (5 x 107 cycles)</th>
<th>σ_u/σ_{FS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N3 non-heat-treated</td>
<td>110</td>
<td>48</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>55</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>175</td>
<td>70</td>
<td>0.40</td>
</tr>
<tr>
<td>H9 heat treated</td>
<td>155</td>
<td>80</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>85</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Plastics

Plastics are very subject to fatigue failure, but the data on fatigue stress are complex. A working value varies between 0.18 and 0.43 times the tensile strength. Curves are given for some plastics.

Effect of surface finish on endurance limit

The values of endurance limits and fatigue stress given are based on tests on highly polished small specimens. For other types of surface the endurance limit must be multiplied by a suitable factor which varies with tensile strength. Values are given for a tensile strength of 1400 N mm$^{-2}$.

<table>
<thead>
<tr>
<th>Surface</th>
<th>Surface factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polished</td>
<td>1.0</td>
</tr>
<tr>
<td>Ground</td>
<td>0.90</td>
</tr>
<tr>
<td>Machined, cold drawn</td>
<td>0.65</td>
</tr>
<tr>
<td>Hot rolled</td>
<td>0.37</td>
</tr>
<tr>
<td>As-forged</td>
<td>0.25</td>
</tr>
</tbody>
</table>

There are also factors which depend upon size, temperature, etc.

1.3.3 Causes of fatigue failure in welds

Under fatigue loading, discontinuities lead to stress concentration and possible failure. Great care must be taken in welds subject to fluctuating loads to prevent unnecessary stress concentration. Some examples are given below of bad cases.
1.3.4 Stress concentration factors

Stress concentration factors are given for various common discontinuities; for example, it can be seen that for a 'wide plate' with a hole the highest stress is 3 times the nominal stress. General values are also given for keyways, gear teeth, screw threads and welds.

Stress concentration factor is defined as:

\[K = \frac{\text{Highest value of stress at a discontinuity}}{\text{Nominal stress at the minimum cross-section}} \]

Plate with hole at centre of width

\[K = \frac{\sigma_{\text{max}}}{\sigma}; \quad \sigma = \frac{P}{wh} \]

\(\sigma_{\text{max}} \) occurs at A and B.

Semi-infinite plate with hole near edge

\[\sigma_A = \text{stress at A} \]
\[\sigma_B = \text{stress at B} \]
\[\sigma = \text{stress away from hole} \]

\[K_a = \frac{\sigma_A}{\sigma}; \quad K_B = \frac{\sigma_B}{\sigma} \]

<table>
<thead>
<tr>
<th>(d/w)</th>
<th>0.00</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
<th>0.70</th>
<th>0.80</th>
<th>0.85</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K)</td>
<td>3.00</td>
<td>3.03</td>
<td>3.14</td>
<td>3.36</td>
<td>3.74</td>
<td>4.32</td>
<td>4.70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: In this case the area of maximum cross-section is used.
Bending of stepped flat bar with fillets (values of K)

\[K = \frac{\sigma_{\text{max}}}{6M/hd^2} \]

<table>
<thead>
<tr>
<th>(D/d)</th>
<th>0.01</th>
<th>0.01</th>
<th>0.04</th>
<th>0.06</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>1.64</td>
<td>1.44</td>
<td>1.32</td>
<td>1.28</td>
<td>1.24</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1.02</td>
<td>1.94</td>
<td>1.66</td>
<td>1.46</td>
<td>1.38</td>
<td>1.32</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1.05</td>
<td>2.42</td>
<td>2.04</td>
<td>1.74</td>
<td>1.60</td>
<td>1.48</td>
<td>1.40</td>
<td>1.34</td>
<td>1.29</td>
</tr>
<tr>
<td>1.10</td>
<td>2.80</td>
<td>2.34</td>
<td>1.96</td>
<td>1.78</td>
<td>1.60</td>
<td>1.49</td>
<td>1.40</td>
<td>1.31</td>
</tr>
<tr>
<td>1.20</td>
<td>3.30</td>
<td>2.68</td>
<td>2.21</td>
<td>1.96</td>
<td>1.70</td>
<td>1.55</td>
<td>1.44</td>
<td>1.34</td>
</tr>
<tr>
<td>1.50</td>
<td>3.80</td>
<td>2.98</td>
<td>2.38</td>
<td>2.08</td>
<td>1.78</td>
<td>1.59</td>
<td>1.48</td>
<td>1.36</td>
</tr>
<tr>
<td>2.00</td>
<td>—</td>
<td>3.14</td>
<td>2.52</td>
<td>2.20</td>
<td>1.86</td>
<td>1.64</td>
<td>1.51</td>
<td>1.37</td>
</tr>
<tr>
<td>3.00</td>
<td>—</td>
<td>3.30</td>
<td>2.68</td>
<td>2.34</td>
<td>1.93</td>
<td>1.67</td>
<td>1.53</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Tension of stepped bar with fillets (values of K)

\[K = \frac{\sigma_{\text{max}}}{P/hd} \]

<table>
<thead>
<tr>
<th>(R/d)</th>
<th>0.01</th>
<th>0.02</th>
<th>0.04</th>
<th>0.06</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.25</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>1.68</td>
<td>1.48</td>
<td>1.34</td>
<td>1.26</td>
<td>1.20</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1.02</td>
<td>2.00</td>
<td>1.70</td>
<td>1.49</td>
<td>1.39</td>
<td>1.30</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1.05</td>
<td>2.50</td>
<td>2.08</td>
<td>1.74</td>
<td>1.60</td>
<td>1.45</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1.10</td>
<td>2.96</td>
<td>2.43</td>
<td>1.98</td>
<td>1.78</td>
<td>1.60</td>
<td>1.50</td>
<td>1.43</td>
<td>1.39</td>
<td>1.36</td>
</tr>
<tr>
<td>1.20</td>
<td>3.74</td>
<td>2.98</td>
<td>2.38</td>
<td>2.14</td>
<td>1.89</td>
<td>1.72</td>
<td>1.62</td>
<td>1.56</td>
<td>1.53</td>
</tr>
<tr>
<td>1.30</td>
<td>4.27</td>
<td>3.40</td>
<td>2.67</td>
<td>2.38</td>
<td>2.06</td>
<td>1.86</td>
<td>1.73</td>
<td>1.64</td>
<td>1.59</td>
</tr>
<tr>
<td>1.50</td>
<td>4.80</td>
<td>3.76</td>
<td>3.00</td>
<td>2.64</td>
<td>2.24</td>
<td>1.99</td>
<td>1.84</td>
<td>1.74</td>
<td>1.67</td>
</tr>
<tr>
<td>2.00</td>
<td>—</td>
<td>—</td>
<td>3.30</td>
<td>2.90</td>
<td>2.44</td>
<td>2.13</td>
<td>1.95</td>
<td>1.84</td>
<td>1.76</td>
</tr>
</tbody>
</table>
Bending of grooved shaft (values of K)

\[K = \frac{\sigma_{\text{max}}}{32M/\pi d^3} \]

Torsion of grooved shaft (values of K)

\[K = \frac{\tau_{\text{max}}}{16T/\pi d^3} \]
Bending of stepped shaft (values of K)

$$K = \frac{\sigma_{\text{max}}}{32M/\pi d^3}$$

<table>
<thead>
<tr>
<th>D/d</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.08</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>1.65</td>
<td>1.44</td>
<td>1.36</td>
<td>1.32</td>
<td>1.29</td>
<td>1.25</td>
<td>1.24</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1.02</td>
<td>1.96</td>
<td>1.64</td>
<td>1.54</td>
<td>1.46</td>
<td>1.41</td>
<td>1.34</td>
<td>1.32</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1.05</td>
<td>2.41</td>
<td>2.04</td>
<td>1.84</td>
<td>1.73</td>
<td>1.65</td>
<td>1.52</td>
<td>1.48</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1.10</td>
<td>2.85</td>
<td>2.34</td>
<td>2.08</td>
<td>1.94</td>
<td>1.84</td>
<td>1.66</td>
<td>1.60</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1.20</td>
<td>3.40</td>
<td>2.62</td>
<td>2.32</td>
<td>2.14</td>
<td>2.00</td>
<td>1.75</td>
<td>1.65</td>
<td>1.50</td>
<td>1.42</td>
<td>1.30</td>
</tr>
<tr>
<td>1.50</td>
<td>3.73</td>
<td>2.90</td>
<td>2.52</td>
<td>2.30</td>
<td>2.13</td>
<td>1.84</td>
<td>1.72</td>
<td>1.54</td>
<td>1.43</td>
<td>1.35</td>
</tr>
<tr>
<td>2.00</td>
<td>—</td>
<td>—</td>
<td>2.70</td>
<td>2.42</td>
<td>2.25</td>
<td>1.92</td>
<td>1.78</td>
<td>1.58</td>
<td>1.46</td>
<td>1.36</td>
</tr>
<tr>
<td>3.00</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2.60</td>
<td>2.42</td>
<td>2.04</td>
<td>1.88</td>
<td>1.61</td>
<td>1.48</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Torsion of stepped shaft (values of K)

$$K = \frac{\tau_{\text{max}}}{16T/\pi d^5}$$

<table>
<thead>
<tr>
<th>D/d</th>
<th>0.02</th>
<th>0.03</th>
<th>0.05</th>
<th>0.07</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.05</td>
<td>1.60</td>
<td>1.48</td>
<td>1.33</td>
<td>1.25</td>
<td>1.20</td>
<td>1.16</td>
<td>1.13</td>
<td>1.09</td>
</tr>
<tr>
<td>1.10</td>
<td>1.75</td>
<td>1.60</td>
<td>1.44</td>
<td>1.35</td>
<td>1.28</td>
<td>1.21</td>
<td>1.17</td>
<td>1.12</td>
</tr>
<tr>
<td>1.20</td>
<td>1.85</td>
<td>1.72</td>
<td>1.59</td>
<td>1.43</td>
<td>1.33</td>
<td>1.25</td>
<td>1.19</td>
<td>1.14</td>
</tr>
<tr>
<td>1.30</td>
<td>—</td>
<td>1.78</td>
<td>1.59</td>
<td>1.47</td>
<td>1.36</td>
<td>1.27</td>
<td>1.21</td>
<td>1.14</td>
</tr>
<tr>
<td>1.50</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.50</td>
<td>1.39</td>
<td>1.28</td>
<td>1.22</td>
<td>1.15</td>
</tr>
<tr>
<td>1.75</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.51</td>
<td>1.40</td>
<td>1.29</td>
<td>1.24</td>
</tr>
<tr>
<td>2.00</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.41</td>
<td>1.31</td>
<td>1.24</td>
</tr>
<tr>
<td>2.50</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.42</td>
<td>1.31</td>
</tr>
</tbody>
</table>
Welds

Reinforced butt weld, $K = 1.2$

Toe of transverse fillet weld, $K = 1.5$

End of parallel fillet weld, $K = 2.7$

Tee butt joint sharp corner, $K = 2.0$

Typical stress concentration factors for various features

<table>
<thead>
<tr>
<th>Component</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyways</td>
<td>1.36–2.0</td>
</tr>
<tr>
<td>Gear teeth</td>
<td>1.5–2.2</td>
</tr>
<tr>
<td>Screw threads</td>
<td>2.2–3.8</td>
</tr>
</tbody>
</table>

1.4 Bending of beams

Beams generally have higher stresses than axially loaded members and most engineering problems involve bending. Examples of beams include structural members, shafts, axles, levers, and gear teeth.

To simplify the analysis, beams are usually regarded as being either ‘simply supported’ at the ends or ‘built in’. In practice, the situation often lies between the two.
1.4.1 Beams - basic theory

Symbols used:

\(x \) = distance along beam
\(y \) = deflection normal to \(x \)
\(i \) = slope of beam = \(\frac{dy}{dx} \)
\(R \) = radius of curvature
\(S \) = shear force
\(M \) = bending moment
\(w \) = load per unit length
\(W \) = concentrated load
\(I \) = second moment of area of beam
\(E \) = Young's modulus

\[
\frac{w}{EI} = \frac{d^4y}{dx^4}, \quad \frac{S}{EI} = \frac{d^2y}{dx^2}, \quad \frac{M}{EI} = \frac{dy}{dx}, \quad \frac{1}{R} = \frac{d^2y}{dx^2} \quad \text{(approx.)}
\]

Principle of superposition

For a beam with several loads, the shear force, bending moment, slope and deflection can be found at any point by adding those quantities due to each load acting separately.

Example For a cantilever with an end load \(W \) and a distributed load \(w \), per unit length.

Due to \(W \) only: \(S_a = W; \quad M_a = WL; \quad y_a = WL^3/3EI \)
Due to \(w \) only: \(S_b = wL; \quad M_b = wL^2/2; \quad y_b = wL^4/8EI \)

For both \(W \) and \(w \): \(S_a = W + wL; \quad M_a = WL + wL^2/2; \quad y_a = WL^3/3EI + wL^4/8EI \)

Bending stress

Bending stress at \(y \) from neutral axis \(\sigma = \frac{My}{I} \)

Maximum tensile stress \(\sigma_{m} = \frac{M_{y_m}}{I} \)

where: \(y_m \) = greatest \(y \) on tensile side.

Maximum compressive stress \(\sigma_{m} = \frac{M_{y_m}}{I} \)

where: \(y_m \) = greatest \(y \) on compressive side.

Values of \(I \) for some sections

Rectangular section \(B \times D \)
\[I = BD^3/12 \text{ about axis parallel to } B. \]
Hollow rectangular section, hole \(b \times d \)
\[I = (BD^3 - bd^3)/12 \text{ about axis parallel to } B. \]
Circular section, diameter \(D \)
\[I = \pi D^4/64 \text{ about diameter.} \]
Hollow circular section, hole diameter \(d \)
\[I = \pi(D^4 - d^4)/64 \text{ about diameter.} \]
S section, \(B \times D, \) flange \(T, \) web \(t \)
\[I = [BD^3 - (B-t)(D-2T)^3]/12 \text{ about axis parallel to } B. \]

1.4.2 Standard cases of beams

The table gives maximum values of the bending moment, slope and deflection for a number of standard cases. Many complex arrangements may be analysed by using the principle of superimposition in conjunction with these.
Symbols used:

- L = length of beam
- I = second moment of area
- w = load per unit length
- W = total load = wL for distributed loads
- E = Young's modulus

Maximum bending moment $M_m = k_1 WL$

Maximum slope $i_m = k_2 WL^2/EI$

Maximum deflection $y_m = k_3 WL^3/EI$

<table>
<thead>
<tr>
<th>Type of beam</th>
<th>Moment coefficient, k_1</th>
<th>Slope coefficient, k_2</th>
<th>Deflection coefficient, k_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at wall</td>
<td>1</td>
<td>$\frac{1}{2}$ at load</td>
<td>$\frac{1}{3}$ at load</td>
</tr>
<tr>
<td>at load</td>
<td>$\frac{1}{4}$ at load</td>
<td>$\frac{1}{16}$ at ends</td>
<td>$\frac{1}{48}$ at load</td>
</tr>
<tr>
<td>at load</td>
<td>$K(1-K)$ at load</td>
<td>$K(1-K^2)/6$ at right-hand end</td>
<td>$K^2(1-K)^2/3$ at load (not maximum)</td>
</tr>
<tr>
<td>at centre</td>
<td>$\frac{1}{8}$ at centre</td>
<td>$\frac{1}{24}$ at ends</td>
<td>$\frac{5}{384}$ at centre</td>
</tr>
<tr>
<td>at centre and ends</td>
<td>$\frac{1}{8}$ at centre and ends</td>
<td>$\frac{64}{64}$ at ends</td>
<td>$\frac{1}{192}$ at centre</td>
</tr>
<tr>
<td>at ends</td>
<td>$\frac{1}{12}$ at ends</td>
<td>0.00803 at 0.21L from each end</td>
<td>$\frac{3}{384}$ at centre</td>
</tr>
</tbody>
</table>
1.4.3 Continuous beams

Most beam problems are concerned with a single span. Where there are two or more spans the solution is more complicated and the following method is used. This uses the so-called 'equation of three moments' (or Clapeyron's equation), which is applied to two spans at a time.

Clapeyron's equation of three moments

Symbols used:
- \(M \) = bending moment
- \(L \) = span
- \(I \) = second moment of area
- \(A \) = area of 'free' bending moment diagram treating span as simply supported
- \(\bar{x} \) = distance from support to centroid \(C \) of \(A \)
- \(y \) = deflections of supports due to loading

(1) General case:
\[
M_1 L_1 I_1 + 2M_2 (L_1 I_1 + L_2 I_2) + M_3 L_2 I_2 = 6(A_1 \bar{x}_1/L_1 + A_2 \bar{x}_2/L_2) + 6E[y_2/L_1 + (y_2 - y_3)/L_2]
\]

(2) Supports at same level, same \(I \):
\[
y_1 = y_2 = y_3 = 0
\]
\[
M_1 L_1 + 2M_2 (L_1 + L_2) + M_3 L_2 = 6(A_1 \bar{x}_1/L_1 + A_2 \bar{x}_2/L_2)
\]

(3) Free ends, \(M_1 = M_3 = 0 \):
\[
M_2 (L_1 + L_2) = 3(A_1 \bar{x}_1/L_1 + A_2 \bar{x}_2/L_2)
\]

1.4.4 Bending of thick curved bars

In these the calculation of maximum bending stress is more complex, involving the quantity \(h^2 \) which is given for several geometrical shapes. The method is used for loaded rings and the crane hook.
Bending of thick curved bars, rings and crane hooks

If \(M \) acts as shown:

Stress on inside of curve \(\sigma_2 = \frac{M}{AR} \left(1 - \frac{y_2}{R - y_2} \cdot \frac{R^2}{h^2} \right) \)

Stress on outside of curve \(\sigma_1 = \frac{M}{AR} \left(1 + \frac{y_1}{R + y_1} \cdot \frac{R^2}{h^2} \right) \)

where values of \(h^2 \) are as given below.

General: \(h^2 = \frac{R^3}{A} \int \frac{dA}{R + y} - R^2 \)

Rectangle: \(h^2 = \frac{R^3}{D} \ln \left(\frac{2R + D}{2D - D} \right) - R^2 \)

Trapezoid: \(h^2 = \frac{R^3}{A} \left[\frac{C + (B-C)(R+F)}{(E+F)} \right] \)

\(\ln \left(\frac{R+F}{R-E} \right) - (B-C) - R^2 \)

Circle: \(h^2 = \frac{2R^3}{(R + \sqrt{R^2 - r^2})} - R^2 \)

Triangle: \(h^2 = \frac{R^3}{A} \left(\frac{B_3 \ln R_3/R_3 + B_2 \ln R_3/R_2}{A} \right) \)

\(+ B_1 \ln R_2/R_1 \) - \(R^2 \)

where: \(R \) = radius at centroid, \(A \) = total area.
This method can be used for any shape made up of rectangles.
Maximum stresses (at A and B):

Outside, tensile \(\sigma_A = \frac{W}{\pi A} \left(\frac{R^2}{(R^2 + h^2)} \right) \left[1 + \frac{R^2}{h^2} \left(\frac{y_1}{y_1 + R} \right) \right] \)

Inside, compressive \(\sigma_c = \frac{W}{\pi A} \left(\frac{R^2}{(R^2 + h^2)} \right) \left[\frac{R^2}{h^2} \left(\frac{y_2}{R - y_2} - 1 \right) \right] \)

where: \(A \) = area of cross-section, \(R \) = radius at centroid C. Use appropriate \(h^2 \) for the section.

Stresses in a crane hook

There is a bending stress due to moment \(W\alpha \) and a direct tensile stress of \(W/A \) at \(P \).

Inside, tensile stress \(\sigma_I = \frac{W\alpha}{AR} \left(\frac{y_2}{(R - y_2)} \frac{R^2}{h^2} - 1 \right) + W/A \)

Outside, compressive stress \(\sigma_c = \frac{W\alpha}{AR} \left[1 + \frac{y_1}{(y_1 + R)} \frac{R^2}{h^2} \right] - W/A \)

Use appropriate \(h^2 \) for the section.

1.4.5 Bending of thin curved bars and rings

Stresses and deflections for a loaded thin ring

Maximum bending moment \(M_{\text{max}} = \frac{WR}{\pi} \) (at A)
Maximum bending stresses

\[\sigma_i = \frac{M_{\text{max}}y_1}{I} \] (tensile on outside)

\[\sigma_c = \frac{M_{\text{max}}y_2}{I} \] (compressive on inside)

Deflection in direction of load

\[\delta_w = \frac{WR^3}{4EI} \frac{\pi^2 - 8}{\pi} \]

Deflection in direction normal to load

\[\delta_n = -\frac{WR^3}{2EI} \left(\frac{4 - \pi}{\pi} \right) \] (reduces diameter)

Stresses and deflections in thin curved bars

Case I: \(M_{\text{max}} = WR \) (at A)

Maximum bending stresses

\[\sigma_i = \frac{M_{\text{max}}y_1}{I} \] (tensile on outside)

\[\sigma_c = \frac{M_{\text{max}}y_2}{I} \] (compressive on inside)

Deflection in direction of load

\[\delta_w = \frac{\pi WR^3}{4EI} \]

Deflection in direction normal to load

\[\delta_n = \frac{WR^3}{2EI} \]

Case II: \(M_{\text{max}} = 2WR \) (at A)

Stresses as for case I.

Deflection in direction of load

\[\delta_w = \frac{3\pi WR^3}{2EI} \]

Deflection in direction normal to load

\[\delta_n = \frac{2WR^3}{EI} \]
Case III: \(M_{\text{max}} = WR \) (A to B)

Stresses as for case I.

Deflection in direction of load \(\delta_w = \frac{WR^2}{EI} \left(\frac{\pi R}{4} + L \right) \)

Deflection in direction normal to load \(\delta_n = \frac{WR}{EI} \left(\frac{R^2}{2} + RL + \frac{L^2}{2} \right) \)

III

1.4.6 Transverse vibration of beams

Formulae are given for the fundamental frequency of transverse vibrations of beams due to the beam's own mass and due to concentrated masses.

Uniform cantilever, beam mass only

Frequency of vibration \(f = \frac{0.56}{L^2} \sqrt{EI/m} \)

where: \(m \) = mass per unit length of beam, \(I \) = second moment of area, \(L \) = length of beam.

Built-in beam, mass of beam only

\[f = \frac{1.57}{L^2} \sqrt{EI/m} \]

Concentrated mass: for all cases with a single mass

\[f = \frac{1}{2\pi} \sqrt{g/y} \]

where: \(y \) = static deflection at load, \(g \) = acceleration due to gravity.

For cantilever mass at end \(f = 1/2\pi \sqrt{3EI/mL^3} \)

Simply supported beam, central mass

\[f = 1/2\pi \sqrt{48EI/mL^3} \]

Simply supported beam, non-central mass

\[f = 1/2\pi \sqrt{3EI/ma^2b^2} \]
where: \(f_b \) = frequency for beam only, \(f_1, f_2, \ldots \), are frequencies for each mass.

Energy method

If \(y \) is the static deflection under a mass \(m \), then

\[
f = \frac{1}{2\pi} \sqrt{\frac{g \Sigma m y^2}{\Sigma m y^2}}
\]

1.5 Springs

Springs are used extensively in engineering to control movement, apply forces, limit impact forces, reduce vibration and for force measurement.

1.5.1 Helical torsion and spiral springs

Close-coiled helical spring

This consists of a wire of circular or rectangular cross-section, wrapped around an imaginary cylinder to form a helix. Springs may be 'compression', with flat ends, or 'tension' with loading hooks. Helical springs may also be used as 'torsion' springs. Formulae are given for stress and deflection as well as frequency of vibration.

Close-coiled helical compression spring

Symbols used:

- \(D \) = mean diameter
- \(d \) = wire diameter
- \(c \) = clearance between coils
- \(L \) = free length

\[
\begin{align*}
\frac{1}{f^2} &= \frac{1}{f_1^2} + \frac{1}{f_2^2} + \frac{1}{f_3^2} + \ldots \\
\end{align*}
\]
Load \(W = \frac{\pi d^2}{8CK_w} \)

Wire diameter \(d = \sqrt{\frac{8WCK_w}{\pi}} \)

Stiffness \(s = \frac{Gd}{8nC^3} \)

Deflection \(y = \frac{W}{s} \)

Total number of coils \(n = n + 1.5 \) (for ground, flattened ends)

Free length \(L = (n + 1)d + nc \)

Ratio \(L/D = \) about 2 to 3 for stability

'Close-coiled' length \(L_c = (n + 1)d \)

Helical tension spring

The formulae for load and stiffness are the same. There is usually no initial clearance between coils, and there is an initial 'built-in' compression. Various types of end hooks are used.

Helical torsion spring

Angle of twist (for torque \(T \)) \(\theta = \frac{64TDn}{Ed^4} \)

Maximum bending stress \(\sigma_m = \frac{32T}{\pi d^3} \)

Compression helical spring of rectangular section

Section is \(b \times d \), where \(b = \) major dimension.

Maximum shear stress (side \(b \)) \(\tau_b = (1.8d + 3b)WDK/2b^2d^2 \)

Maximum shear stress (side \(d \)) \(\tau_d = (1.8b + 3d)WDK/2b^2d^2 \)

Direct shear stress \(\tau = 1.5W/bd \)

where: \(K = \frac{4C - 1}{4C - 4} \) and \(C = D/d \) for case 1 and \(D/b \) for case 2.

Case 1 \((d = \) radial dimension): Maximum stress \(\tau_{max} = \tau_b + \tau \)

Case 2 \((b = \) radial dimension): Maximum stress \(\tau_{max} = \tau_b \) or \(\tau_d + \tau \) whichever is the greater.

Stiffness \(s = \frac{W}{y} = \frac{Gb^3d^3}{7n(b^2 + d^2)nD^3} \)

Vibration of helical spring

Axial vibration under own mass:

Frequency of vibration \(f = \frac{1}{2\pi} \sqrt{\frac{G/2\rho}{Ed^4/64DnL}} \)

Torsional vibration under end inertia \(I \):

Frequency of vibration \(f = \frac{1}{2\pi} \sqrt{\frac{Ed^4}{64DnL}} \)
Spiral spring

A spiral spring consists of a strip or wire wound in a flat spiral subjected to a torque to give an angular deflection. The clock spring is an example.

Equation of spiral \(D = D_i + pu/x \)

where:
- \(D \) = diameter
- \(D_i \) = minimum diameter
- \(u \) = angle around spiral (in radians)
- \(p \) = radial pitch
- \(D_o \) = maximum diameter

Torque \(T = Fa \), where \(a = D_o/2 \).

Angle of twist \(\theta = 1.25 TL/EI \)

Maximum bending stress \(\sigma_m = My/I \) where \(M = 2T \)

Length of strip or wire \(= \pi n(D_o + D_i)/2 \), where \(n \) = number of turns.

Second moment of area \(I = bt^3/12 \) (strip) or \(\pi d^4/64 \) (wire)

Dimension \(y = t/2 \) (strip) or \(d/2 \) (wire)

Conical helical compression spring

This is a helical spring in which the coils progressively change in diameter to give increasing stiffness with increasing load. It has the advantage that the compressed height is small. This type of spring is used for upholstery.

Conical helical spring

Symbols used:
- \(D_1 \) = smaller diameter
- \(D_2 \) = larger diameter
- \(d \) = wire diameter
- \(n \) = number of active coils

Load \(W = \frac{\pi td^2}{8CK} \)

where:
- \(C = D_2/d \)
- \(K = \left(4C - 1\right)/\left(4C - 4\right) + 0.615 \frac{C}{C} \)

Stiffness \(s = \frac{W}{y} = \frac{Gd^4}{2n(D_1 + D_2)(D_1^2 + D_2^2)} \)

Allowable working stress (MPa) for helical springs (grade 060A96)

<table>
<thead>
<tr>
<th>Spring</th>
<th>Wire diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light duty</td>
<td>1-3.9</td>
</tr>
<tr>
<td>Medium duty</td>
<td>4-7.9</td>
</tr>
<tr>
<td>Heavy duty</td>
<td>8-12</td>
</tr>
<tr>
<td>Wire diameter (mm)</td>
<td></td>
</tr>
<tr>
<td>Light duty</td>
<td>590</td>
</tr>
<tr>
<td>Medium duty</td>
<td>470</td>
</tr>
<tr>
<td>Heavy duty</td>
<td>400</td>
</tr>
<tr>
<td>Wire diameter (mm)</td>
<td></td>
</tr>
<tr>
<td>Light duty</td>
<td>510</td>
</tr>
<tr>
<td>Medium duty</td>
<td>410</td>
</tr>
<tr>
<td>Heavy duty</td>
<td>340</td>
</tr>
<tr>
<td>Wire diameter (mm)</td>
<td></td>
</tr>
<tr>
<td>Light duty</td>
<td>450</td>
</tr>
<tr>
<td>Medium duty</td>
<td>360</td>
</tr>
<tr>
<td>Heavy duty</td>
<td>300</td>
</tr>
</tbody>
</table>
1.5.2 Leaf and laminated leaf springs

Leaf springs

A leaf spring consists basically of a beam, usually of flat strip, e.g. a cantilever or simply supported beam, subjected to a load to give a desired deflection proportional to the load.

The laminated leaf spring, or ‘carriage spring’, is used for vehicle suspensions and is made up of several flat strips of steel of various lengths clamped together. The spring is effectively a diamond-shaped plate cut into strips. Analysis shows that the maximum bending stress is constant.

The quarter-elliptic spring is, in effect, half of the so-called ‘semi-elliptic’ spring.

Beam leaf springs

Maximum stress \(\sigma = k_1 WL/bd^2 \)
Stiffness \(s = W/y = k_2 EI/L^3 \)

<table>
<thead>
<tr>
<th>Spring type</th>
<th>(k_1)</th>
<th>(k_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>192</td>
</tr>
</tbody>
</table>

Laminated leaf springs

Symbols used:
- \(L \) = span
- \(b \) = width of leaves
- \(t \) = thickness of leaves
- \(W \) = load
- \(y \) = deflection
- \(\sigma_m \) = maximum bending stress
- \(n \) = number of leaves
- \(E \) = Young’s modulus
- \(s \) = stiffness = \(W/y \)

Semi-elliptic spring:
Maximum bending stress \(\sigma_m = 3WL/2nt^2 \)
Stiffness \(s = 8Enbt^2/3L^3 \)

Quarter-elliptic spring:
Maximum bending stress \(\sigma_m = 6WL/nbt^2 \)
Stiffness \(s = Enbt^2/6L^3 \)

1.5.3 Torsion bar spring

The torsion bar is a solid or hollow circular bar clamped at one end with a lever attached to the other. The load is applied to the end of the lever and twists the bar elastically.

Symbols used:
- \(R \) = lever radius
- \(D \) = bar diameter
- \(L \) = bar length
- \(G \) = torsional modulus
- \(\tau \) = allowable shear stress

For a hollow shaft of bore \(d \) use:
\((D^4 - d^4) \) instead of \(D^4 \)
\((D^4 - d^4)/D \) instead of \(D^3 \)
Deflection \(y = \frac{32PR^2L}{\pi GD^4} \)

Stiffness \(S = \frac{P}{y} = \frac{\pi GD^4}{32R^2L} \)

Maximum load \(P_{\text{max}} = \frac{\pi D^3t}{16R} \)

1.5.4 **Belleville washer spring (disk or diaphragm spring)**

This is an annular dished steel ring which deflects axially under load. Several springs may be used in series or parallel arrangements to give lower or higher stiffness, respectively. The spring is space saving and its non-linear characteristics can be altered considerably by varying the proportions.

Symbols used:
- \(D_o \) = outer diameter
- \(D_i \) = inner diameter
- \(t \) = thickness
- \(h \) = height

\[y = \text{deflection} \]
\[E = \text{Young's modulus} \]
\[v = \text{Poisson's ratio} \]
\[k_1, k_2, k_3 = \text{constants} \]
\[\sigma_m = \text{maximum stress} \]
\[W = \text{load} \]

\[W = \frac{E y}{(1 - v^2) k_1 D_o^2} \left[(h - y) \left(\frac{h - y}{2} \right) t + t^3 \right] \] (may be negative)

\[\sigma_m = \frac{E y}{(1 - v^2) k_1 D_o^2} \left[k_2 \left(\frac{h - y}{2} \right) \pm k_3 t \right] \] (positive for A, negative for B. Stress is positive or negative depending on the value of \(y \))

<table>
<thead>
<tr>
<th>(D_o/D_i)</th>
<th>(k_1)</th>
<th>(k_2)</th>
<th>(k_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>0.46</td>
<td>1.07</td>
<td>1.14</td>
</tr>
<tr>
<td>1.8</td>
<td>0.64</td>
<td>1.18</td>
<td>1.30</td>
</tr>
<tr>
<td>2.2</td>
<td>0.73</td>
<td>1.27</td>
<td>1.46</td>
</tr>
<tr>
<td>2.6</td>
<td>0.76</td>
<td>1.35</td>
<td>1.60</td>
</tr>
<tr>
<td>3.0</td>
<td>0.78</td>
<td>1.43</td>
<td>1.74</td>
</tr>
<tr>
<td>3.4</td>
<td>0.80</td>
<td>1.50</td>
<td>1.88</td>
</tr>
<tr>
<td>3.8</td>
<td>0.80</td>
<td>1.57</td>
<td>2.00</td>
</tr>
<tr>
<td>4.2</td>
<td>0.80</td>
<td>1.64</td>
<td>2.14</td>
</tr>
<tr>
<td>4.6</td>
<td>0.80</td>
<td>1.71</td>
<td>2.26</td>
</tr>
<tr>
<td>5.0</td>
<td>0.79</td>
<td>1.77</td>
<td>2.38</td>
</tr>
</tbody>
</table>

- Series stacking
- Parallel stacking
1.5.5 **Rubber springs**

Springs of rubber bonded to metal are made in a wide variety of configurations. The rubber is usually in shear and, because of the high internal damping, such springs are used for limiting vibrations.

Two-block shear spring – load P

Shear stress \(\tau = \frac{P}{2A} \)

Deflection \(y = \frac{Ph}{2AG} \)

where \(G \) = shear modulus.

Cylindrical shear spring, load P

Maximum shear stress \(\tau_m = \frac{P}{\pi h D_i} \)

Deflection \(y = \frac{P}{2\pi hG} \ln \left(\frac{D_o}{D_i} \right) \)

Modulus and strength of rubber

\(G = 0.3 \) to 1.2 MPa

\(E = 0.9 \) to 3.6 MPa

Allowable shear stress = 0.2 to 0.4 MPa

Deflection limited to 10% to 20% of free height.

1.5.6 **Form factors for springs**

The table gives form factors giving the amount of strain energy stored in different types of spring relative to a bar with uniform direct stress.
Strain energy $u = C_t r_{\text{max}}^2 / 2E$ or $C_t r_{\text{max}}^2 / 2G$ per unit volume

<table>
<thead>
<tr>
<th>Type of spring</th>
<th>Modulus</th>
<th>C_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar in tension or compression</td>
<td>E</td>
<td>1.0</td>
</tr>
<tr>
<td>Beam, uniform bending moment</td>
<td>E</td>
<td>0.33</td>
</tr>
<tr>
<td>Clock spring</td>
<td>E</td>
<td>0.33</td>
</tr>
<tr>
<td>Uniformly tapered cantilever</td>
<td>E</td>
<td>0.33</td>
</tr>
<tr>
<td>Straight cantilever</td>
<td>E</td>
<td>0.11</td>
</tr>
<tr>
<td>Torsion spring</td>
<td>E</td>
<td>0.25</td>
</tr>
<tr>
<td>Belleville washer</td>
<td>E</td>
<td>0.05 to 0.20</td>
</tr>
<tr>
<td>Torsion bar</td>
<td>G</td>
<td>0.50</td>
</tr>
<tr>
<td>Torsion tube</td>
<td>G</td>
<td>$\frac{1}{2}(1 - (d/D)^2) \approx 0.8$ to 0.9</td>
</tr>
<tr>
<td>Compression spring</td>
<td>G</td>
<td>0.50/Wahl factor</td>
</tr>
</tbody>
</table>

1.6 Shafts

Rotating or semirotating shafts are invariably subject to both torsion and bending due to forces on levers, cranks, gears, etc. These forces may act in several planes parallel to the shaft, producing bending moments which may be resolved into two perpendicular planes. In addition, there will be a torque which varies along the length of the shaft. The following shows how the resultant bending moments and bearing reactions can be determined.

In the case of gears, the contact force is resolved into a tangential force and a separating force.

1.6.1 Resultant bending moment diagram

Forces P and Q may be resolved into vertical and horizontal components:

$P_v = P \sin \theta_p$, $Q_v = Q \sin \theta_q$, $P_h = P \cos \theta_p$, $Q_h = Q \cos \theta_q$

Assuming the bearings act as simple supports, the bending moment (BM) diagram is drawn. From BM diagrams for each plane, moments M_v and M_h may be found and also reactions vR_a, vR_b, hR_a and hR_b.

![Diagram of shaft forces and reactions](image)
Resultant bending moments, M_r:
At any point $M_r = \sqrt{M_\nu^2 + M_\sigma^2}$
and the bending stress $= M_r / Z$; $Z =$ modulus

Resultant reactions, R_a and R_b (bearing loads):

\[
\begin{align*}
R_a &= \sqrt{R_a^2 + R_b^2} \\
R_b &= \sqrt{R_a^2 + R_b^2}
\end{align*}
\]

A torque diagram is also drawn and the torque and resultant bending moment can be found at any point. The equivalent torque and equivalent bending moment are found as follows:

\[
T_e = \sqrt{M_e^2 + T^2}; \ M_e = (M_i + T_e)/2
\]

The shaft diameter is:

\[
d = \frac{16T^2}{\pi\tau} \quad \text{or} \quad d = \frac{32M_e}{\pi\sigma}
\]

(whichever is the greater)

where: τ and $\sigma =$ the allowable shear and bending stresses.

Note: bearings are assumed to act as simple supports.

1.6.2 Shafts with gears and levers

Shafts with levers

A force such as P acting at radius R, can be replaced by a force P acting at the shaft centre and a torque PR. P is resolved into components P_v and P_h as before.

Shafts with gears

The tangential force on the gear teeth is $F_i = P/2\pi NR$
where: $P =$ power, $N =$ speed, $R =$ gear radius.

The 'separating force' is $F_s = F_i \tan \phi$
where: $\phi =$ the pressure angle. F_i and F_s can be assumed to act at the gear centre if a torque $F_i R$ is introduced. F_i and F_s can be resolved into vertical and horizontal components, as before. The forces are shown for a shaft AB with two gears.
1.6.3 Strength of keys and splines

A key is used to prevent a machine part from moving relative to another part. In the case of a shaft, the key must be strong enough to transmit a high torque and is often made of alloy or high tensile steel. The fit may be either 'close' or 'free' if sliding is desired. The 'keyway' in the shaft and hub is usually produced by milling.

Splines are a means of keying a hub to a shaft where separate keys are not required. They consist of mating grooves in hub and shaft of rectangular, triangular or involute form. The grooves are designed to allow axial sliding.

Types of key

The main types of key are the 'rectangular' where the keyways are half the key depth, the 'feather' where the keyway is closed at each end, the 'Gib-head' used always at the end of a shaft and with a head so that it can be tapped into place, the 'Woodruff key' which is segmental and for use on tapered shafts, and the inexpensive 'saddle' and 'round' keys.
Torque capacity

\[T = \frac{d}{r} \text{length of spline or shaft radius for key} \]

\[n = \text{number of splines} \]

\[L = \text{length of spline or key} \]

\[b = \text{breadth of key} \]

\[T = \text{limiting torque} \]

\[\sigma_c = \text{allowable crushing stress} \]

\[\tau = \text{allowable shear stress} \]

Keys:

\[T = \frac{bLr}{\tau} \text{ (based on shear)} \]

\[T = \frac{\sigma_c dLr}{\tau} \text{ (based on crushing)} \]

Splines:

\[T = \frac{\sigma_c n dLr}{\tau} \text{ (based on crushing)} \]

\((\sigma_c \approx \text{about } 7 \text{ MPa for steel}) \)

A large variety of flexible couplings are used to accommodate angular, parallel or axial misalignment. Several types are shown.

1.6.4 Shaft couplings

Shaft couplings may be ‘solid’ or ‘flexible’. Solid couplings may consist simply of a sleeve joining the shafts, the drive being taken by pins or keys. For large powers, bolted flanges are used to give either a solid or flexible coupling.
Bonded rubber couplings are simple and cheap and permit large misalignments. Their non-linear characteristics make them useful for detuning purposes. Three annular types are shown and their spring constants given.
Solid bolted shaft coupling

Symbols used:

- $D =$ shaft diameter
- $D_p =$ pitch circle diameter of bolts
- $D_b =$ bolt diameter
- $n =$ number of bolts
- $b =$ width of key
- $L =$ length of key and hub
- $P =$ power transmitted
- $N =$ shaft speed
- $FS =$ factor of safety
- $\tau_y =$ shear yield stress

Power capacity $P = \pi^2 N n D_p D_b^2 \tau_y / 4 FS$

Key $FS = \pi DN b L \tau_y / P$

Shaft $FS = \pi^2 N D^3 \tau_y / 8 P$

If bolts and shaft have same material and FS, then:

Bolt diameter $D_b = \sqrt[3]{D^3 / 2 n D_p}$

Sleeve shaft coupling

Symbols used:

- $D =$ shaft diameter
- $D_o =$ sleeve outer diameter
- $T =$ torque transmitted
- $\tau =$ allowable shear stress
- $N =$ speed
- $P =$ power
- $b =$ key width
- $L =$ key length

Torque capacity of shaft $T = \pi D^3 \tau / 16$

Torque capacity of key $T = \frac{DbL \tau}{2}$

Power capacity of shaft $P = \pi^2 N D^3 \tau / 8$

Torque capacity of sleeve $T = \pi \tau (D_o^4 - D^4) / 16 D_o$

(allowance to be made for keyway)

For equal strength of sleeve and shaft $D_o = 1.22 D$.

Pinned sleeve shaft coupling

Symbols used:

- $D =$ shaft diameter
- $d =$ pin diameter

Torque capacity of pin $T = \pi d^2 D \tau / 4$

1.6.5 Bonded rubber shaft coupling

Symbols used:

- $\theta =$ angle of twist
- $T =$ torque
- $G =$ shear modulus
- $s =$ spring constant $= T / \theta$
1.6.6 Critical speed of whirling of shafts

When a shaft rotates there is a certain speed at which, if there is an initial deflection due to imperfections, the centripetal force is equal to the elastic restoring force. At this point the deflection increases to a large value and the shaft is said to 'whirl'. Above this speed, which depends on the shaft dimensions, the material and the loads carried by the shaft, the shaft whirling decreases. Shafts must be run well below or well above this speed. It can be shown that numerically the critical speed is the same as the frequency of transverse vibrations. Formulae are given for several common cases.

Critical speed for all cases:

\[N_c = \frac{1}{2\pi} \sqrt{\frac{g}{y}} \]

where: \(g = \) acceleration due to gravity, \(y = \) 'static' deflection at mass.

Cantilevered shaft with disc at end

Mass of shaft neglected.

\[N_c = \frac{1}{2\pi} \sqrt{\frac{3EI}{ML^3}} \]

Central disc, 'short' bearings

\[N_c = \frac{1}{2\pi} \sqrt{\frac{48EI}{ML^3}} \]

Non-central disc, short bearings

\[N_c = \frac{1}{2\pi} \sqrt{\frac{3EI}{ma^2b^2}} \]
Central disc, 'long' bearings

\[N_c = \frac{1}{2\pi} \sqrt{192EI mL^5} \]

Uniform shaft, 'long' bearings

\[N_c = \frac{3.57}{L^2} \sqrt{EI/m} \]

where: \(m \) = mass per unit length of shaft.

Combined loading on uniform shaft

(1) Dunkerley's method:

\[1/N^2 = 1/N^2 + 1/N^2 + 1/N^2 + \ldots \]

where:

\(N_0 \) = critical speed of system
\(N_s \) = critical speed for shaft alone
\(N_1, N_2, \ldots \) = critical speeds for discs acting alone

(2) Energy method:

\[N_c = \frac{1}{2\pi} \sqrt{\frac{g\Sigma m y}{\Sigma m y^2}} \]

where: \(m \) = any mass of a disc, \(y \) = static deflection under the disc.

Uniform shaft, 'short' bearings

\[N_c = \frac{1.57}{L^2} \sqrt{EI/m} \]

where: \(m \) = mass per unit length of shaft.

1.6.7 Torsional vibration of shafts

For long shafts, e.g. a ship's propeller shaft, torsional vibration may be a problem and the shaft must be designed so that its rotational speed is not numerically near to its natural torsional frequency.

Symbols used:

\(f \) = frequency of torsional oscillations (Hz)
\(s \) = torsional stiffness = \(GJ/L \) (N-m rad\(^{-1}\))
\(G \) = torsional modulus (N m\(^{-2}\))
J = polar second moment of area (m4)
D = shaft outer diameter (m)
d = inner diameter
L = length of shaft (m)
I = moment of inertia of disc = mk^2 (kg m2)
m = mass of disc (kg)
k = radius of gyration of disc (m)

Single disc on shaft

\[f = \frac{1}{2\pi} \sqrt{s/I} \]

\[J = \frac{\pi D^4}{32} \text{ (for solid shaft)}; \quad \frac{\pi}{32} (D^4 - d^4) \text{ (for hollow shaft)} \]

Two discs on uniform shaft

\[f = \frac{1}{2\pi} \sqrt{s(I_1 + I_2)/I_1I_2} \]

Position of node \(L_{1} = L/(1 + \frac{I_1}{I_2}) \), \(L = L_1 + L_2 \)

Two discs on stepped solid shaft

\[f = \frac{1}{2\pi} \sqrt{s(I_1 + I_2)/I_1I_2} \]

\[s = GJ_{e}/L_e \]

where: \(L_e = L_s + L_n(D_s/D_e)^4 \) (equivalent length of shaft for uniform diameter \(D_s \) length

\[J_e = \frac{\pi}{32} D_e^4 \]

Note: the node must be in length \(L_s \).

1.7 Struts

A component subject to compression is known as a 'strut' if it is relatively long and prone to 'buckling'. A short column fails due to shearing when the compressive stress is too high, a strut fails when a critical load called the 'buckling' or 'crippling' load causes sudden bending. The resistance to buckling is determined by the 'flexural rigidity' \(EI \) or \(EAk^2 \), where \(k \) is the least radius of gyration.

The important criterion is the 'slenderness ratio' \(L/k \), where \(L \) is the length of the strut.

The Euler theory is the simplest to use but the much more involved Perry–Robertson formula (BS 449) is regarded as the most reliable.
1.7.1 Euler theory

Buckling load \(P = Kn^2EI/L^2 \)

where:
- \(I = \text{least second moment of area} = Ak^2 \)
- \(K = \text{factor dependent on 'end conditions'} \)
- \(k = \text{least radius of gyration} = \sqrt{I/A} \)
- \(A = \text{cross-sectional area} \)
- \(L = \text{length} \)
- \(E = \text{Young's modulus} \)

1.7.2 Rankine–Gordon formula

Buckling load \(P = \sigma A = \frac{\sigma_c A}{1 + a \left(\frac{L}{k} \right)^2} \)

where:
- \(\sigma = \text{failure stress} \)
- \(\sigma_c = \text{elastic limit in compression} \)
- \(a = \text{constant} \)
- \(A = \text{cross-sectional area} \)

1.7.3 Johnson's parabolic formula

Buckling load \(P = \sigma_c A \left[1 - b(L/k)^2 \right] \)

\(\sigma_c = 290 \text{ MPa for mild steel} \)
\(b = 0.00003 \) (pinned ends) or 0.00002 (fixed ends)

1.7.4 Straight-line formula

Buckling load \(P = \sigma_c A \left[1 - K(L/k) \right] \)

\(\sigma_c = 110 \text{ MPa (mild steel)} \) or 140 (structural steel)
\(K = 0.005 \) (pinned ends) or 0.004 (fixed ends)

1.7.5 Perry–Robertson formula

Buckling load \(P = A \left[\frac{\sigma_c + (K + 1)\sigma_c}{2} \right. \)

\[- \sqrt{\left(\frac{\sigma_c + (K + 1)\sigma_c}{2} \right)^2 - \sigma_c \sigma_e} \]

where:

\(K = 0.3 \left(\frac{L_c}{100k} \right)^2 \)

<table>
<thead>
<tr>
<th>Material</th>
<th>(\sigma_c) MPa</th>
<th>Pinned ends</th>
<th>Fixed ends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild steel</td>
<td>320</td>
<td>1/7500</td>
<td>1/30000</td>
</tr>
<tr>
<td>Wrought iron</td>
<td>250</td>
<td>1/9000</td>
<td>1/36000</td>
</tr>
<tr>
<td>Cast iron</td>
<td>550</td>
<td>1/1600</td>
<td>1/6400</td>
</tr>
<tr>
<td>Wood</td>
<td>35</td>
<td>1/3000</td>
<td>1/12000</td>
</tr>
</tbody>
</table>
Maximum compressive stress \(\sigma_m = \frac{M_y + P}{A} \)

Maximum deflection \(y_m = -\frac{M_m}{P} + \frac{wL^2}{8P} \)

where: \(\alpha = \sqrt{\frac{P}{E I}} \)

1.8 Cylinders and hollow spheres

In engineering there are many examples of hollow cylindrical and spherical vessels subject to internal or external pressure. The formulae given are based on Lamé's equations. In the case of external pressure, failure may be due to buckling. In the following, \(p \) is the difference between the internal and external pressures.

1.8.1 Thin cylinder, internal pressure

Hoop stress \(\sigma_h = \frac{pD}{2t} \)

Longitudinal stress \(\sigma_L = \frac{pD}{4t} \)

Radial displacement \(x_r = \frac{D}{2E} (\sigma_h - \nu \sigma_L) \)

where: \(\nu \) = Poisson's ratio.

For external pressure, use \(-p\).

Buckling of thin cylinder due to external pressure

(1) Long tube, free ends:

\[L > 2.45D \sqrt{\frac{D}{2t}} ; \quad P_b = \frac{E}{4(1-\nu^2)} \left(\frac{2t}{D} \right)^3 \]
(2) Short tube, ends held circular:

\[p_b = \frac{1.61 E t^2}{L D} \sqrt{\frac{1}{(1-v^2)^3}} \frac{D^2}{4t^2} \]

Thin spherical vessel, internal pressure

\[\sigma_b = \sigma_L = \frac{p D}{4t}; \quad x_r = \frac{D \sigma_b}{2E} (1 - \nu) \]

For external pressure use \(-p\).

Thin cylinder with hemispherical ends

For equal maximum stress \(t_s = 0.5 t_c \)
For no distortion \(t_s = 0.4 t_c \)

Thick cylinder, internal pressure, no longitudinal pressure

Maximum hoop stress \(\sigma_{h,\text{max}} = \frac{p(r_b^2 + r_a^2)}{r_b^2 - r_a^2} \)
(at inner radius); \(\sigma_L = 0 \)

Maximum radial stress \(\sigma_{r,\text{max}} = p \)
Maximum shear stress \(\tau_{\text{max}} = \frac{pr_b}{r_b^2 - r_a^2} \)
(at inner radius)

Change in inner radius \(x_a = \frac{p r_a}{E} \left(\frac{r_b^2 + r_a^2}{r_b^2 - r_a^2} + \nu \right) \)
Change in outer radius \(x_b = \frac{p r_b}{E} \left(\frac{2r_a^2}{r_b^2 - r_a^2} \right) \)

Thick cylinder, internal pressure, all directions

\(\sigma_{h,\text{max}} \) and \(\sigma_{r,\text{max}} \) as above.

Longitudinal stress \(\sigma_L = \frac{p}{r_b^2 - r_a^2} \)

\[x_a = \frac{p r_a}{E} \left[\frac{r_b^2 + r_a^2}{r_b^2 - r_a^2} - \nu \left(\frac{r_a^2}{r_b^2 - r_a^2} - 1 \right) \right] \]

\[x_b = \frac{p r_b}{E} \left[\frac{2r_a^2}{r_b^2 - r_a^2} (2 - \nu) \right] \]

Thick sphere, internal pressure

Symbols used:

- \(\sigma \) = direct stress
- \(\tau \) = shear stress
- \(p \) = pressure
- \(\nu \) = Poisson's ratio
- \(t \) = thickness
- \(D \) = diameter
- \(r \) = radius
x = radial displacement
E = Young’s modulus
L = length

\[\sigma_{b, \text{max}} = \frac{p (r_a^2 + 2r_b^2)}{2 (r_a^2 - r_b^2)} \text{ (at inner radius)} \]

\[\sigma_{r, \text{max}} = p \text{ (at inner radius)} \]

\[\tau_{\text{max}} = \frac{3p}{4} \left(\frac{r_b^2}{r_a^2} \right) \text{ (at inner radius)} \]

\[x_a = \frac{p r_a}{E} \left[\frac{(r_a^2 + 2r_b^2)}{2(r_a^2 - r_b^2)} (1 - v) + v \right] \]

\[x_b = \frac{p r_b}{E} \left[\frac{3r_b^2}{2(r_a^2 - r_b^2)} (1 - v) \right] \]

1.8.2 Shrink fit of cylinders

Two hollow cylindrical parts may be connected together by shrinking or press-fitting where a contact pressure is produced. In the case of a hub on a shaft this eliminates the need for a key. Formulae are given for the resulting stresses, axial fitting force and the resulting torque capacity in the case of a shaft.

Symbols used:
\(r_a \) = inner radius of inner cylinder (= 0 for solid shaft)
\(r_b \) = outer radius of inner cylinder
\(r_c \) = outer radius of outer cylinder
\(x \) = interference between inner and outer cylinders
\(L \) = length of outer cylinder
\(E_i, E_o \) = Young’s modulus of inner and outer cylinders
\(v_i, v_o \) = Poisson’s ratio of inner and outer cylinders
\(p \) = radial pressure between cylinders
\(\mu \) = coefficient of friction between cylinders
\(T \) = torque capacity of system

\(P_a \) = axial force to give interference fit
\(\alpha \) = coefficient of linear expansion of inner or outer cylinder
\(\Delta t \) = temperature difference between cylinders

Contact pressure

\[p = \frac{x \cdot E_i E_o}{2r_b \ [E_o(K_3 - v_o) + E_i(K_2 + v_o)]} \]

Hoop stresses

Inner cylinder:
\[\sigma_a = -pK_4 \text{ at } r_a \]
\[\sigma_b = -pK_3 \text{ at } r_b \]

Outer cylinder:
\[\sigma_a = pK_2 \text{ at } r_b \]
\[\sigma_c = pK_1 \text{ at } r_c \]

where:
\[K_1 = 1/[(r_c/r_b)^2 - 1] \]
\[K_2 = (r_c/r_b)^2 + 1 \]
\[K_3 = (r_c/r_a)^2 + 1 \]
\[K_4 = (r_c/r_a)^2 - 1 \]

\[P_a = 2\mu\pi r_b L p; \quad T = P_a r_b \]

Thermal shrinkage

If the outer cylinder is heated or the inner cylinder is cooled by \(\Delta t \), then:

\[x = 2\alpha r_b \Delta t \]
1.9 Contact stresses

When a ball is in contact with a flat, concave or convex surface, a small contact area is formed, the size of the area depending on the load and materials. In the case of a roller, a line contact is obtained, giving a rectangular contact area of very small width. The following gives the size of these areas and the maximum stress for several common cases. The theory is of great importance in the design of rolling bearings.

1.9.1 Contact stresses for balls and rollers

Symbols used:
\(E_1, E_2 = \) Young's moduli
\(F = \) load
\(r_1, r_2 = \) radii
\(v_1, v_2 = \) Poisson's ratio

Two balls in contact

Contact area radius \(a = \sqrt{\frac{3F((1-v_1^2)/E_1 + (1-v_2^2)/E_2)}{(1/r_1 + 1/r_2)}} \)

Contact stress \(\sigma_c = \frac{3F}{2\pi a^2} \)

Ball on flat surface, same material: \(r_2 = \infty, r_1 = r \)

\(a = \sqrt{\frac{6F(1-v^2)r}{E}}; \sigma_c = \frac{3F}{2\pi a^2} \)

Two balls in contact, same material: \(E_1 = E_2, v_1 = v_2 \)

\(a = \sqrt{\frac{6F(1-v^2)}{E(1/r_1 + 1/r_2)}}; \sigma_c = \frac{3F}{2\pi a^2} \)
Ball on concave surface, same material:
r_2 negative

\[a = \sqrt{\frac{6F(1 - \nu^2)}{E(1/r_1 - 1/r_2)}} \quad \sigma_c = \frac{3F}{2\pi a^2} \]

Two rollers in contact, same material

\[w = \sqrt{\frac{32F(1 - \nu^2)}{\pi LE(1/r_1 + 1/r_2)}} \quad \sigma_c = \frac{4F}{\pi w L} \]

Two rollers in contact

Contact width

\[w = \sqrt{\frac{16F((1 - \nu^1_1)/E_1 + (1 - \nu^2_2)/E_2)}{\pi L(1/r_1 + 1/r_2)}} \quad \sigma_c = \frac{4F}{\pi w L} \]

Roller on flat surface, same material: $r_2 = \infty$, $r_1 = r$

\[w = \sqrt{\frac{32F(1 - \nu^2)^r}{\pi LE}} \quad \sigma_c = \frac{4F}{w L} \]

Roller on concave surface, same material: r_2 negative

\[w = \sqrt{\frac{32F(1 - \nu^2)}{\pi LE(1/r_1 - 1/r_2)}} \quad \sigma_c = \frac{4F}{\pi w L} \]
1.10 Loaded flat plates

Formulae are given for the maximum stress and deflection for circular and rectangular flat plates subject to concentrated or distributed loads (pressure) with the edges either clamped or supported. In practice, the edge conditions are usually uncertain and some compromise must be made. The equations are only valid if the deflection is small compared to the plate thickness.

Symbols used:
- r = radius of circular plate
- a = minor length of rectangular plate
- b = major length of rectangular plate
- p = uniform pressure loading
- P = concentrated load
- v = Poisson’s ratio (assumed to be 0.3)
- E = Young’s modulus
- t = plate thickness
- σ_m = maximum stress
- γ_m = maximum deflection
- D = flexural rigidity = $Et^3/12(1-v^2)$

1.10.1 Stress and deflection of circular flat plates

Circular plate, uniform load, edges simply supported

$$\sigma_m = \frac{3(3+v)p r^2}{8t^2} = \frac{1.238pr^2}{t^2} \quad \text{(at centre)}$$

$$\gamma_m = \frac{(5+v)pr^4}{64(1+v)D} = \frac{0.696pr^4}{Et^3} \quad \text{(at centre, } v=0.3)$$

Circular plate, uniform load, clamped edge

$$\sigma_m = \frac{3pr^2}{4t^2} \quad \text{(at edge)}$$

$$\gamma_m = \frac{pr^4}{64D} = \frac{0.171pr^4}{Et^3} \quad \text{(at centre)}$$

Circular plate, concentrated load at centre, simply supported

$$\sigma_m = \frac{P}{t^2} \left(1+v\right) \left(0.485 \ln \frac{r}{t} + 0.52\right) + 0.48$$

$$\gamma_m = \frac{P}{t^2} \left(0.6305 \ln \frac{r}{t} + 1.156\right) \quad \text{(at centre, lower surface)}$$

$$\gamma_m = \frac{(3+v)Pr^2}{16\pi(1+v)D} = \frac{0.552Pr^2}{Et^3} \quad \text{(at centre)}$$

Circular plate, concentrated load at centre, clamped edge

$$\sigma_m = \frac{P}{t^2} \left(1+v\right) \left(0.485 \ln \frac{r}{t} + 0.52\right)$$

$$\gamma_m = \frac{P}{t^2} \left(0.631 \ln \frac{r}{t} + 0.676\right) \quad \text{(at centre, lower surface)}$$

$$\gamma_m = \frac{pr^2}{16\pi D} = \frac{0.217Pr^2}{Et^3} \quad \text{(at centre, lower surface)}$$
1.10.2 **Stress and deflection of rectangular flat plates**

Rectangular plate, uniform load, simply supported (Empirical)

Since corners tend to rise off the supports, vertical movement must be prevented without restricting rotation.

\[
\sigma_m = \frac{0.75pa^2}{I^2[1.61(a/b)^3 + 1]} \quad \text{(at centre)}
\]

\[
y_m = \frac{0.142pa^4}{Et^3[2.21(a/b)^3 + 1]} \quad \text{(at centre)}
\]

Rectangular plate, uniform load, clamped edges (empirical)

\[
\sigma_m = \frac{pa^2}{2t^2[0.623(a/b)^6 + 1]} \quad \text{(at middle of edge b)}
\]

\[
y_m = \frac{0.0284pa^4}{Et^3[1.056(a/b)^3 + 1]} \quad \text{(at centre)}
\]

Rectangular plate, concentrated load at centre, simply supported (empirical)

The load is assumed to act over a small area of radius \(e\).

\[
\sigma_m = \frac{1.5P}{\pi t^2} \left[(1 + \nu) \ln \frac{2r}{ne} + 1 - k_2 \right] \quad \text{(at centre)}
\]

\[
y_m = k_1 \frac{Pa^2}{Et^3} \quad \text{(at centre)}
\]

<table>
<thead>
<tr>
<th>(b/a)</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2.0</th>
<th>3.0</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_1)</td>
<td>0.127</td>
<td>0.138</td>
<td>0.148</td>
<td>0.162</td>
<td>0.171</td>
<td>0.177</td>
<td>0.180</td>
<td>0.185</td>
<td>0.185</td>
</tr>
<tr>
<td>(k_2)</td>
<td>0.564</td>
<td>0.445</td>
<td>0.349</td>
<td>0.211</td>
<td>0.124</td>
<td>0.072</td>
<td>0.041</td>
<td>0.003</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Rectangular plate, concentrated load at centre, clamped edges (empirical)

\[
\sigma_m = k_2P/t^2 \quad \text{(at middle of edge b)}
\]

\[
y_m = k_1Pa^2/Et^3 \quad \text{(at centre)}
\]
STRENGTHS OF MATERIALS

1.10.3 Loaded circular plates with central hole

Symbols used:
- \(a\) = outer radius
- \(b\) = inner radius
- \(t\) = thickness
- \(P\) = concentrated load
- \(p\) = distributed load
- \(E\) = modulus of elasticity

Maximum deflection

\[
\frac{y_{\text{max}}}{} = k_1 \frac{Pa^2}{Et^3}
\]

or

\[
\frac{y_{\text{max}}}{a} = k_2 \frac{pa^4}{t^2}
\]

Maximum stress

\[
\frac{\sigma_{\text{max}}}{a} = k_1 \frac{P}{t^2}
\]

or

\[
\frac{\sigma_{\text{max}}}{a} = k_2 \frac{pa^2}{t^2}
\]

The following table gives values of \(k_1\) and \(k_2\) for each of the 10 cases shown for various values of \(a/b\). It is assumed that Poisson's ratio \(v=0.3\).

Table

<table>
<thead>
<tr>
<th>Case</th>
<th>(k_1)</th>
<th>(k_2)</th>
<th>(k_1)</th>
<th>(k_2)</th>
<th>(k_1)</th>
<th>(k_2)</th>
<th>(k_1)</th>
<th>(k_2)</th>
<th>(k_1)</th>
<th>(k_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.341</td>
<td>0.100</td>
<td>0.519</td>
<td>1.26</td>
<td>0.672</td>
<td>1.48</td>
<td>0.734</td>
<td>1.880</td>
<td>0.724</td>
<td>2.17</td>
</tr>
<tr>
<td>2</td>
<td>0.202</td>
<td>0.660</td>
<td>0.491</td>
<td>1.19</td>
<td>0.902</td>
<td>2.04</td>
<td>1.220</td>
<td>3.340</td>
<td>1.300</td>
<td>4.30</td>
</tr>
<tr>
<td>3</td>
<td>0.184</td>
<td>0.592</td>
<td>0.414</td>
<td>0.976</td>
<td>0.664</td>
<td>1.440</td>
<td>0.824</td>
<td>1.880</td>
<td>0.830</td>
<td>2.08</td>
</tr>
<tr>
<td>4</td>
<td>0.00504</td>
<td>0.194</td>
<td>0.0242</td>
<td>0.320</td>
<td>0.0810</td>
<td>0.454</td>
<td>0.172</td>
<td>0.673</td>
<td>0.217</td>
<td>1.021</td>
</tr>
<tr>
<td>5</td>
<td>0.00199</td>
<td>0.105</td>
<td>0.0139</td>
<td>0.259</td>
<td>0.0575</td>
<td>0.480</td>
<td>0.130</td>
<td>0.657</td>
<td>0.162</td>
<td>0.710</td>
</tr>
<tr>
<td>6</td>
<td>0.00343</td>
<td>0.122</td>
<td>0.0313</td>
<td>0.336</td>
<td>0.1250</td>
<td>0.740</td>
<td>0.221</td>
<td>1.210</td>
<td>0.417</td>
<td>1.450</td>
</tr>
<tr>
<td>7</td>
<td>0.00231</td>
<td>0.135</td>
<td>0.0183</td>
<td>0.410</td>
<td>0.0938</td>
<td>1.040</td>
<td>0.293</td>
<td>2.150</td>
<td>0.448</td>
<td>2.990</td>
</tr>
<tr>
<td>8</td>
<td>0.00510</td>
<td>0.227</td>
<td>0.0249</td>
<td>0.428</td>
<td>0.0877</td>
<td>0.753</td>
<td>0.209</td>
<td>1.205</td>
<td>0.293</td>
<td>1.514</td>
</tr>
<tr>
<td>9</td>
<td>0.00129</td>
<td>0.115</td>
<td>0.0064</td>
<td>0.220</td>
<td>0.0237</td>
<td>0.405</td>
<td>0.062</td>
<td>0.703</td>
<td>0.092</td>
<td>0.933</td>
</tr>
<tr>
<td>10</td>
<td>0.00077</td>
<td>0.090</td>
<td>0.0062</td>
<td>0.273</td>
<td>0.0329</td>
<td>0.710</td>
<td>0.110</td>
<td>1.540</td>
<td>0.179</td>
<td>2.230</td>
</tr>
</tbody>
</table>
2.1 Basic mechanics

2.1.1 Force

A force may be represented by an arrow-headed line called a 'vector' which gives 'magnitude', proportional to its length, its 'point of application' and its 'direction'.

Referring to the figure, the magnitude is 20N, the point of application is O, and the line of action is XX.

2.1.2 Triangle of forces

A force may be resolved into two forces at right angles to one another. The force F shown is at angle θ to axis XX and has components:

\[F_x = F \cos \theta \quad \text{and} \quad F_y = F \sin \theta \]

\[\theta = \tan^{-1} \left(\frac{F_y}{F_x} \right) \quad \text{and} \quad F = \sqrt{F_x^2 + F_y^2} \]

Resultant of several forces

If several forces \(F_1, F_2, F_3, \) etc., act on a body, then the resultant force may be found by adding the components of these forces in the \(x \) and \(y \) directions and constructing a triangle of forces.

\[F_x = F_1 \cos \theta_1 + F_2 \cos \theta_2 + \ldots \]
\[F_y = F_1 \sin \theta_1 + F_2 \sin \theta_2 + \ldots \]

The resultant force is \(F_r = \sqrt{F_x^2 + F_y^2} \)

at an angle \(\theta_r = \tan^{-1} \left(\frac{F_y}{F_x} \right) \) to the \(x \) axis.

Polygon of forces

The force vectors may be added by drawing a polygon of forces. The line completing the polygon is the resultant (note that its arrow points in the opposite direction), and its angle to a reference direction may be found.
Balance of forces

A system of forces is balanced, i.e. in equilibrium, when the resultant F_r is zero, in which case its components F_x and F_y are each zero.

2.1.3 Moment of a force, couple

The moment of a force F about a point O at a perpendicular distance d from its line of action, is equal to Fd.

Resultant of several moments

If forces F_1, F_2, etc., act on a body at perpendicular distances d_1, d_2, etc., from a point O, the moments are, $M_1 = F_1d_1$, $M_2 = F_2d_2$, etc. about O.

The resultant moment is $M_r = M_1 + M_2 + \ldots$.

Clockwise moments are reckoned positive and counterclockwise moments negative. If the moments 'balance' $M_r = 0$ and the system is in equilibrium.

Couple

If two equal and opposite forces have parallel lines of action a distance a apart, the moment about any point O at distance d from one of the lines of action is $M = F_a(d-a) = Fa$.

This is independent of d and the resultant force is zero. Such a moment is called a 'couple'.

Resolution of a moment into a force and a couple

For a force F at a from point O; if equal and opposite forces are applied at O, then the result is a couple Fa and a net force F.

General condition for equilibrium of a body

Complete equilibrium exists when both the forces and the moments balance, i.e. $F_r = 0$ and $M_r = 0$.

2.1.4 Linear and circular motion

Relationships for distance travelled, velocity and time of travel are given for a constant linear acceleration.
Similar relationships are given for circular motion with constant angular acceleration. In practice, acceleration may vary with time, in which case analysis is much more difficult.

2.1.5 Acceleration

Linear acceleration

Symbols used:
- \(u \) = initial velocity
- \(v \) = final velocity
- \(t \) = time
- \(a \) = acceleration
- \(x \) = distance

Also:
\[
\begin{align*}
\frac{dv}{dt} &= a = \frac{v}{x}
\end{align*}
\]

And:
\[
\begin{align*}
x &= \int v \, dt; \quad v = \int a \, dt
\end{align*}
\]

Equations of motion:
\[
\begin{align*}
v &= u + at \\
x &= \frac{(u + v)}{2t} \\
v^2 &= u^2 + 2ax \\
x &= ut + \frac{1}{2}at^2
\end{align*}
\]

Angular acceleration

Let:
- \(\omega_1 \) = initial angular velocity
- \(\omega_2 \) = final angular velocity
- \(t \) = time
- \(\theta \) = angle of rotation
- \(\alpha \) = angular acceleration

Also:
\[
\begin{align*}
\omega &= \frac{d\theta}{dt}; \quad \alpha = \frac{d\omega}{dt} = \omega \frac{d\omega}{d\theta}
\end{align*}
\]

And:
\[
\begin{align*}
\theta &= \int \omega \, dt; \quad \omega = \int \alpha \, dt
\end{align*}
\]

Equations of motion:
\[
\begin{align*}
\omega_2 &= \omega_1 + \alpha t \\
\theta &= \frac{(\omega_1 + \omega_2)}{2t} \\
\omega_2^2 &= \omega_1^2 + 2\alpha \theta \\
\theta &= \omega_1 t + \frac{\alpha t^2}{2}
\end{align*}
\]

2.1.6 Centripetal acceleration

For a mass \(m \) rotating at \(\omega \text{ rad s}^{-1} \) at radius \(r \):

- Tangential velocity \(v = r\omega \)
- Centripetal acceleration \(\frac{v^2}{r} = r\omega^2 \)

2.1.7 Newton's laws of motion

These state that:

1. A body remains at rest or continues in a straight line at a constant velocity unless acted upon by an external force.
2. A force applied to a body accelerates the body by an amount which is proportional to the force.
3. Every action is opposed by an equal and opposite reaction.

2.1.8 Work, energy and power

Kinetic, potential, strain and rotational kinetic energy are defined and the relationships between work, force and power are given.

Work done \(W = \text{force} \times \text{distance} = Fx \) (Nm = J)

Work done by variable force \(W = \int F \, dx \)

Work done by torque \((T) \) \(W = T\theta \) where: \(\theta \) = angle of rotation.

Also \(W = \int T \, d\theta \)

Kinetic energy \(KE = \frac{1}{2}mv^2 \)
Rotational kinetic energy $KE = \frac{I\omega^2}{2}$

where: $I =$ moment of inertia of body

Change of kinetic energy $= \frac{m}{2}(v^2 - u^2)$

Potential energy $PE = mgh$

where: $g =$ acceleration due to gravity (9.81 m s$^{-2}$), $h =$ height above a datum.

Strain energy $SE = \frac{kx^2}{2}$

where: $x =$ deflection, $k =$ stiffness.

Conversion of potential energy to kinetic energy:

$mgh = \frac{mv^2}{2}$

Therefore $v = \sqrt{2gh}$ or $h = \frac{v^2}{2g}$

Power

$P = \frac{W}{t} = \frac{Fx}{t} = Fv$ (Nms$^{-1} =$ J s$^{-1} =$ W)

Rotational power $P =$ torque \times angular velocity

$= T\omega = \frac{T\theta}{t}$

Also, if $N =$ the number of revolutions per second

$P = 2\pi NT$

where: $2\pi N =$ angular velocity ω.

2.1.10 Impact

The following deals with the impact of elastic and inelastic spheres, although it applies to bodies of any shape.

Consider two spheres rolling on a horizontal plane. Velocities before impact are u_1 and u_2 for spheres of mass m_1 and m_2. After impact their velocities are v_1 and v_2.

Coefficient of restitution

$$e = -\frac{\text{difference in final velocities}}{\text{difference in initial velocities}} = \frac{(v_1 - v_2)}{(u_1 - u_2)}$$

Note: $e = 1$ for perfectly elastic spheres; $e = 0$ for inelastic spheres.

Velocities after impact (velocities positive to right):

$$v_1 = \frac{[m_1u_1 + m_2u_2 - em_2(u_1 - u_2)]}{(m_1 + m_2)}$$

$$v_2 = \frac{[m_1u_1 + m_2u_2 + em_1(u_1 - u_2)]}{(m_1 + m_2)}$$

Loss of kinetic energy due to impact $= \frac{m_1(u_1^2 - v_1^2) + m_2(u_2^2 - v_2^2)}{2}$

If $e = 1$, KE loss $= 0$.

If $e = 0$, KE loss $= \frac{m_1m_2(u_1^2 - v_2^2)^2}{2(m_1 + m_2)}$.

2.1.9 Impulse and momentum

Impulse. An impulsive force is one acting for a very short time δt. Impulse is defined as the product of the force and the time, i.e. $F \delta t$.

Momentum is the product of mass and velocity $= mv$

Change of momentum $= mv - mu$

Angular momentum $= I\omega$

Change of angular momentum $= I(\omega_2 - \omega_1)$

Force $F =$ rate of change of momentum $\frac{d(mv)}{dt}$
2.1.11 Centre of percussion

Let:
\[h = \text{distance from pivot to centre of gravity} \]
\[p = \text{distance from pivot to centre of percussion} \]
\[k = \text{radius of gyration of suspended body about centre of gravity} \]
\[p = \frac{h^2 + k^2}{h} \]

Uniform thin rod
\[k^2 = \frac{L^2}{12}; \quad h = \frac{L}{2}; \quad p = \frac{2}{3}L \]

Cylinder
\[k^2 = \left(\frac{L^2}{12} + \frac{D^2}{16} \right); \quad h = \frac{L}{2}; \]
\[p = \frac{2}{3}L + \frac{D^3}{8L} \]

Sphere
\[k^2 = \frac{D^2}{10}; \quad h = \frac{D}{2}; \quad p = \frac{7}{10}D \]

The physical meaning of centre of percussion is that it is the point where an impact produces no reaction at the pivot point.

2.1.12 Vehicles on curved track

Horizontal curved track

Skidding speed \(v_s = \sqrt{gr\mu} \)

Overturning speed \(v_o = \sqrt{ga - \frac{r}{h}} \)

Curved track banked at angle \(\theta \)

Skidding speed \(v_s = \sqrt{gr\mu \left(1 + \tan \frac{\theta}{1 - \mu \tan \theta} \right)} \)

where: \(\mu = \text{coefficient of friction}, \)
\(h = \text{height of CG above ground}. \)

2.1.13 The gyroscope

The flywheel of moment of inertia \(I = mk^2 \) rotates at angular velocity \(\omega_1 \) about the \(x \) axis. An applied couple \(C \) about the \(z \) axis produces an angular velocity
\(\omega_2\) about the \(y\) axis. Directions of rotation are as shown in the figure.

Couple \(C = I\omega_1\omega_2\)

Conversely, if a rotation \(\omega_2\) is applied to the wheel bearings, then a couple \(C\) is produced.

2.1.14 *The pendulum*

Simple pendulum

- Periodic time \(t_p = 2\pi \sqrt{\frac{L}{g}}\)
- Frequency \(f = \frac{1}{t_p}\)

Conical pendulum

- Periodic time \(t_p = 2\pi \sqrt{\frac{L}{gh}}\)
- String tension \(T = mL\omega^2\)

Compound pendulum

- Periodic time \(t_p = 2\pi \sqrt{\frac{(h^2 + k^2)}{gh}}\)
h^2 + k^2 = \frac{1}{h} = \text{the length of the equivalent simple pendulum.}

(Also equal to the distance to the centre of percussion)
Where: \(k = \text{radius of gyration about CG}, h = \text{distance from pivot to CG.} \)

2.1.15 Gravitation

This deals with the mutual attraction which exists between bodies. The magnitude of the force depends on the masses and the distance between them. For two masses \(m_1 \) and \(m_2 \) a distance \(d \) apart, the force is:

\[
F = G \frac{m_1 m_2}{d^2}
\]

where: \(G \) is the 'gravitational constant' = \(6.67 \times 10^{-11} \text{ N m}^2\text{kg}^{-2} \)

For a body \(m_2 \) on the earth's surface \(m_1 = 5.97 \times 10^{24} \text{ kg} \) (earth's mass), \(d = 6.37 \times 10^6 \text{ m} \) (earth's radius). Then

\[
F = \frac{6.67 \times 5.97}{6.37^2} \times 10 m_2 = 9.81 m_2 = gm_2
\]

Thus: \(g = 9.81 \text{ m s}^{-2} \)

Variation of \(g \) with height and latitude

If:

\(L = \text{degrees latitude (0° at equator)} \)

\(h = \text{height above sea level (km)} \)

\(g = 9.806294 - 0.025862 \cos^2 2L + 0.000058 \cos^2 2L - 0.003086 h \)

2.1.16 The solar system

The following table gives useful information on the sun, moon and earth.

<table>
<thead>
<tr>
<th></th>
<th>Earth</th>
<th>Sun</th>
<th>Moon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (kg)</td>
<td>(5.97 \times 10^{24})</td>
<td>(2 \times 10^{30})</td>
<td>(7.34 \times 10^{22})</td>
</tr>
<tr>
<td>Radius (km)</td>
<td>Equatorial 6378</td>
<td>696 000</td>
<td>1738</td>
</tr>
<tr>
<td></td>
<td>Polar 6357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average density (kgm(^{-3}))</td>
<td>5500</td>
<td>1375</td>
<td>3300</td>
</tr>
<tr>
<td>Period of revolution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- About axis</td>
<td>23 h 56 min</td>
<td>25 days</td>
<td>27.33 days</td>
</tr>
<tr>
<td></td>
<td>365.26 days</td>
<td></td>
<td>27.33 days</td>
</tr>
<tr>
<td>- Acceleration due to gravity (m s(^{-2}))</td>
<td>9.81</td>
<td>2.75 \times 10^{8}</td>
<td>1.64</td>
</tr>
<tr>
<td>Mean orbital radius (km)</td>
<td>149.6 \times 10^6</td>
<td></td>
<td>384 400</td>
</tr>
<tr>
<td>Miscellaneous information</td>
<td>Tilt of polar axis 23(\frac{1}{2})°</td>
<td>Type G star.</td>
<td>Period between new moons = 29(\frac{1}{2}) days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Absolute magnitude 5.0.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surface temperature 6000°C.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Centre temperature 14 \times 10^{6}°C</td>
<td></td>
</tr>
</tbody>
</table>
2.1.17 Machines

Mechanical advantage \(MA \) (or force ratio) = \(\frac{\text{Load}}{\text{Effort}} \)

Velocity ratio \(VR \) (or movement ratio) = \(\frac{\text{Distance moved by effort}}{\text{Distance moved by load}} \)

Efficiency \(\eta = \frac{\text{Useful work out}}{\text{Work put in}} = \frac{MA}{VR} \)

2.1.18 Levers

The lever is a simple machine consisting of a pivoted beam. An effort \(E \) lifts a load \(W \). Referring to the figure, and assuming no friction:

\[W = E \frac{a}{b}; \quad MA = \frac{W}{E}; \quad VR = \frac{a}{b} \]

![First-order lever diagram]

First-order lever

![Second-order lever diagram]

Second-order lever

![Third-order lever diagram]

Third-order lever

2.1.19 Projectiles

When a projectile is fired at an angle to a horizontal plane under gravity, the trajectory is a parabola if air resistance is neglected. It can be shown that the maximum range is achieved if the projection angle is 45°. The effect of air resistance is to reduce both range and height.

Assuming no air resistance:

Range \(R = \frac{v^2}{g} \sin 2\theta \) (at \(\theta = 45°; \quad R_{\text{max}} = \frac{v^2}{g} \))

Height \(h = \frac{v^2}{g} \sin^2 \theta \) (at \(\theta = 45°; \quad h = \frac{v^2}{4g} \))

Time of flight \(t = 2 \sin \theta \frac{v}{g} \) (for \(\theta = 45°; \quad t = \frac{\sqrt{2}v}{g} \))

Projection up a slope (of angle \(\beta \)):

Range \(R = \frac{v^2}{g} 2 \sin(\theta - \beta) \cos \theta \)

\(R_{\text{max}} = \frac{v^2}{g} \frac{1}{(1 + \sin \beta)} \) (at \(\theta = 45° + \frac{\beta}{2} \))

2.1.20 Rockets

For a rocket travelling vertically against gravity, the mass of fuel is continually decreasing as the fuel is burnt, i.e. the total mass being lifted decreases uniformly with time.

The following formulae give the velocity and height at any time up to burn-out, and the velocity, height and time expired at burn-out.

Let:

\(V = \) jet velocity (assumed constant)

\(U = \) rocket velocity

\(M_f = \) mass of fuel at blast off

\(M_r = \) mass of rocket with no fuel

\(\dot{m} = \) mass flow rate of fuel

\(t = \) time after blast-off

\(g = \) acceleration due to gravity (assumed to be constant)
The orbital velocity of a satellite is a maximum at sea level and falls off with height, while the orbital time increases. When the period of rotation is the same as that of the planet, the satellite is said to be 'synchronous', i.e. the satellite appears to be stationary to an observer on earth. This is of great value in radio communications.

Let:
- \(v \) = velocity
- \(h \) = height of orbit
- \(a \) = radius of planet
- \(r = a + h \)
- \(t = time \)
- \(g = acceleration \) due to gravity

Orbital velocity \(v_o = \sqrt{g a^2 \over r} \)

Maximum velocity \(v_{\text{max}} = \sqrt{g a} \) (at sea level)

Periodic time (orbit time) \(T_p = 2\pi \sqrt{r^3 \over g a^2} \)

Escape velocity \(v_e = \sqrt{2ga} \)

This is the velocity for a given height when the satellite will leave its orbit and escape the effect of the earth's gravity.

Height of orbit \(h = a \left(\sqrt{g t_p^2 \over 4a^2} - 1 \right) \)

Example

For the earth, \(a = 6.37 \times 10^6 \) m, \(g = 9.81 \) m s\(^{-2} \).

Then: \(v_{\text{max}} = 7.905 \) km s\(^{-1} \) (at sea level)

\(v_e = 11.18 \) km s\(^{-1} \) (about 7 miles per second)

Height of synchronous orbit \(h_s = 35700 \) km \((t_p = 24 \) h\).
2.2 Belt drives

2.2.1 Flat, vee and timing belt drives

Formulae are given for the power transmitted by a belt drive and for the tensions in the belt. The effect of centrifugal force is included.

A table of information on timing belt drives is included.

Symbols used:

- $F_1 =$ belt tension, tight side
- $F_2 =$ belt tension, slack side
- $r_a =$ radius of pulley a
- $r_b =$ radius of pulley b
- $N_a =$ speed of pulley a
- $N_b =$ speed of pulley b
- $m =$ mass of belt per unit length
- $P =$ power transmitted
- $\mu =$ coefficient of friction between belt and pulley
- $F_o =$ initial belt tension
- $\theta_a =$ arc of belt contact pulley a
- $\theta_b =$ arc of belt contact pulley b
- $L =$ distance between pulley centres
- $s =$ percentage slip
- $v =$ belt velocity

Speed ratio:

$$\frac{N_a}{N_b} = \frac{r_b(100-s)}{r_a \cdot 100}$$

(when pulley b is the driver)

Arc of contact ($r_a > r_b$):

$$\theta_a = 180^\circ + 2 \sin^{-1} \left(\frac{r_a - r_b}{L} \right)$$

$$\theta_b = 180^\circ - 2 \sin^{-1} \left(\frac{r_a - r_b}{L} \right)$$

Tension ratio for belt about to slip:

For pulley 'a', $\frac{F_1}{F_2} = e^{\mu \theta_a}$

For pulley 'b', $\frac{F_1}{F_2} = e^{\mu \theta_b}$

where: $e =$ base of natural logarithms ($= 2.718$).

Power capacity $P = \nu(F_1 - F_2)$

where: belt velocity $\nu = 2\pi r_a N_a = 2\pi r_b N_b$ (no slip).

Pulley torque $T_a = r_a(F_1 - F_2)$; $T_b = r_b(F_1 - F_2)$

Initial tension $F_o = \frac{(F_1 + F_2)}{2}$

Effect of centrifugal force: the belt tensions are reduced by mu^2 so that

$$\frac{F_1 - mu^2}{F_2 - mu^2} = e^{\mu \theta}$$

Vee belt

The 'wedge' action of the vee belt produces a higher effective coefficient of friction μ'

$$\mu' = \frac{\mu}{\sin \alpha}$$

where: $\alpha =$ the 'half angle' of the vee ($\mu' = 2.9\mu$ for $\alpha = 20^\circ$).
Timing belts

Timing belts have teeth which mate with grooves on the pulleys. They are reinforced with high strength polymer strands to give power capacity up to three times that of conventional belts at three times the speed. There is no slip so a constant ratio is maintained. A large number of speed ratios is available. Belts are made in several strengths and widths.

Timing belt sizes (BS 4548: 1970)

<table>
<thead>
<tr>
<th>Type</th>
<th>Meaning</th>
<th>Pitch (mm)</th>
<th>Widths (mm)</th>
<th>Constant, K</th>
</tr>
</thead>
<tbody>
<tr>
<td>XL</td>
<td>Extra light</td>
<td>5.08</td>
<td>6.4, 7.9, 9.6</td>
<td>—</td>
</tr>
<tr>
<td>L</td>
<td>Light</td>
<td>9.53</td>
<td>12.7, 19.1, 25.4</td>
<td>1.53</td>
</tr>
<tr>
<td>H</td>
<td>Heavy</td>
<td>12.70</td>
<td>19.1, 25.4, 38.1, 50.8, 76.2</td>
<td>5.19</td>
</tr>
<tr>
<td>XH</td>
<td>Extra heavy</td>
<td>22.23</td>
<td>50.8, 76.2, 101.6</td>
<td>12.60</td>
</tr>
<tr>
<td>XXH</td>
<td>Double extra heavy</td>
<td>31.75</td>
<td>50.8, 76.2, 101.6, 127.0</td>
<td>—</td>
</tr>
</tbody>
</table>

Service factor

<table>
<thead>
<tr>
<th>Hours of service per day</th>
<th><10</th>
<th>10–16</th>
<th>>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>% full power</td>
<td>100</td>
<td>72</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Applications</th>
<th>% full power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Typewriters, radar, light domestic</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Centrifugal pumps, fans, woodworking machines, light conveyors</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td>Punching presses, large fans, printing machines, grain conveyors</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>Blowers, paper machines, piston pumps, textile machines</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>Brickmaking machines, piston compressors, hoists, crushers, mills</td>
<td>54</td>
</tr>
</tbody>
</table>

Power capacity \(P = KNTW \times 10^{-6} \) kilowatts

where:
\(K = \) size constant (see table)
\(N = \) number of revolutions per minute
\(T = \) teeth in smaller pulley
\(W = \) width of belt (mm)

Example: Type H belt, \(W = 50.8 \) mm, \(N = 1500 \) rev min\(^{-1}\), \(T = 20 \), for large fan working 12 hours per day. From tables, \(K = 5.19 \) service factors 72% and 63%.

\[
P = 5.19 \times 1500 \times 20 \times 50.8 \times 10^{-6} \times 0.63 \times 0.72 = 3.59 \text{ kW}
\]

Note: at high speeds and with large pulleys the power capacity may be up to 25% less. See manufacturer's tables.
2.2.2 *Winches and pulleys*

Winch

Velocity ratio $VR = \frac{R}{r}$

Force to raise load $F = \frac{W}{VR} = \eta \frac{W}{R}$

where: $\eta = \text{efficiency}$.

Pulleys

Velocity ratio $VR = 2$

Force to raise load $F = \eta \frac{W}{2}$

Block and tackle

Velocity ratio $VR = n$

where: $n = \text{number of ropes between the sets of pulleys} = 5$ in figure.

Force to raise load $F = \eta \frac{W}{n}$

Differential pulley

Velocity ratio $VR = \frac{2}{\left(1-\frac{r}{R}\right)}$

Force to raise load $F = \eta \frac{W}{VR}$
2.2.3 **Hoist**

Symbols used:
- \(m \) = mass of load
- \(I \) = moment of inertia of drum, etc.
- \(R \) = drum radius
- \(T \) = torque to drive drum
- \(T_f \) = friction torque
- \(a \) = acceleration of load
- \(d \) = deceleration of load
- \(\alpha \) = angular acceleration/deceleration

Load being raised and accelerating

Torque \(T = T_f + I\alpha + mR(a + g) \)

Load rising and coming to rest, no drive

\[T_f - I\alpha = mR(d - g) \]

Deceleration \(d = \frac{(mgR + T_f)}{mR + \frac{I}{R}} \)

Load being lowered and accelerating, no drive

\[T_f + I\alpha = mR(g - a) \]

Acceleration \(a = \frac{(mgR - T_f)}{mR + \frac{I}{R}} \)

Load falling and being brought to rest

\[T = I\alpha - T_f + mR(g + d) \]

2.3 Balancing

2.3.1 Rotating masses

Balancing of rotating components is of extreme importance, especially in the case of high-speed machinery. Lack of balance may be due to a single mass in one plane or masses in two planes some distance apart. The method of balancing is given.

Out of balance due to one mass

For mass \(m \) at radius \(r \) and angular velocity \(\omega \):

Out of balance force \(F = mr\omega^2 \)

This may be balanced by a mass \(m_b \) at \(r_b \) so that \(m_b r_b = mr \)
Several out of balance masses in one plane

The forces are: \(m_1 r_1 \omega^2 \), \(m_2 r_2 \omega^2 \), etc. These are resolved into vertical and horizontal components:

\[F_v = m_1 r_1 \omega^2 \sin \theta_1 + m_2 r_2 \omega^2 \sin \theta_2 + \ldots \]
\[F_h = m_1 r_1 \omega^2 \cos \theta_1 + m_2 r_2 \omega^2 \cos \theta_2 + \ldots \]

Resultant force \(F_r = \sqrt{F_v^2 + F_h^2} \)

at an angle to horizontal axis \(\theta_r = \tan^{-1} \left(\frac{F_v}{F_h} \right) \)

Dynamic unbalance, forces in several planes

For a force \(m r \omega^2 \) acting at \(x \) from bearing \(A \), the moment of the force about the bearing is \(m r \omega^2 x \). This has components:

- \(m r \omega^2 x \sin \theta \) vertically
- \(m r \omega^2 x \cos \theta \) horizontally

For several forces:

Total vertical moment \(M_v = m_1 r_1 \omega^2 x_1 \sin \theta_1 + m_2 r_2 \omega^2 x_2 \sin \theta_2 \)

Total horizontal moment \(M_h = m_1 r_1 \omega^2 x_1 \cos \theta_1 + m_2 r_2 \omega^2 x_2 \cos \theta_2 \)

Resultant moment \(M_r = \sqrt{M_v^2 + M_h^2} \)

acting at \(\theta_r = \tan^{-1} \left(\frac{M_v}{M_h} \right) \)

The reaction at \(B \) is: \(R = \frac{M_r}{L} \)

where: \(L = \) span.

The process is repeated, by taking moments about end \(B \), and \(R \) found.

Method of balancing Complete 'dynamic balance' is achieved by introducing forces equal and opposite to \(R \) and \(R \). In practice, balancing is carried out at planes a short distance from the bearings.

To balance a mass \(m_b \) at \(r_b \) such that \(m_b r_b = \frac{F_r}{\omega^2} \)

is required at an angle \(\theta_r + 180^\circ \).
If this distance is \(c \) then the balancing forces are

\[
R_a \left(\frac{L}{L-c} \right) \text{ and } R_b \left(\frac{L}{L-c} \right)
\]

This introduces small errors due to moments

\[
R_a \frac{c}{(L-c)} \text{ and } R_b \frac{c}{(L-c)}
\]

which can be corrected for as shown in the figure.

A further very small error remains and the process may be repeated until the desired degree of balance is achieved.

2.3.2 Reciprocating masses

For the piston, connecting rod, crank system shown in the figure there exists a piston accelerating force which varies throughout a revolution of the crank. The force can be partially balanced by weights on the crankshaft.

Let:

- \(m \) = mass of piston
- \(\omega \) = angular velocity of crank
- \(r \) = radius of crank
- \(L \) = length of conrod
- \(\theta \) = crank angle

Force to accelerate piston

\[
F = -mr\omega^2 \left(\cos \theta + \frac{r}{L} \cos 2\theta \right)
\]

(approximately, see Section 2.4.1)

Maximum forces

\[
F_1 = m r \omega^2
\]

(at crankshaft speed, which can be balanced)

\[
F_2 = m r \omega^2 \frac{r}{L}
\]

(at twice crankshaft speed)

Effect of conrod mass

The conrod mass may be divided approximately between the crankpin and the gudgeon pin. If \(m_c \) is the conrod mass:

Effective mass at gudgeon

\[
m_1 = m_c + \frac{a}{L}
\]

Effective mass at crankpin

\[
m_2 = m_c + \frac{b}{L}
\]

2.4 Miscellaneous machine elements

2.4.1 Simple engine mechanism

Using the same symbols as in the previous section:

Piston displacement

\[
x = r \left(\frac{1}{2} - \cos \theta + \frac{K^2}{2} \sin^2 \theta + \frac{K^3}{8} \sin^4 \theta + \ldots \right)
\]

Piston velocity

\[
u = r \omega \left[\sin \theta + \frac{K}{2} \sin 2\theta + \frac{K^3}{8} (\sin 2\theta - \frac{1}{2} \sin 4\theta) + \ldots \right]
\]

Piston acceleration

\[
a = r \omega^2 \left[\cos \theta + K \cos 2\theta + \frac{K^3}{4} (\cos 2\theta - \cos 4\theta) + \ldots \right]
\]
where: $K = \frac{r}{L}$.

If K is under about 0.3, it is accurate enough to use only the first two terms containing θ in each formula.

2.4.2 Flywheels

Flywheels are used for the storing of energy in a rotating machine and to limit speed fluctuations. Formulae are given for the calculation of the moment of inertia of flywheels and for speed and energy fluctuation.

Angular velocity $\omega = 2\pi N$

Angular acceleration $\alpha = \frac{(\omega_2 - \omega_1)}{t}$

Acceleration torque $T = I\alpha$

where: $I = mk^2$.

Energy stored $E = \frac{I\omega^2}{2}$

Calculation of I for given speed fluctuation

If $P = \text{power}$, Energy from engine per revolution $= \frac{P}{N}$

Coefficient of speed fluctuation

$$K_N = 2 \frac{(N_{\text{max}} - N_{\text{min}})}{(N_{\text{max}} + N_{\text{min}})} = 2 \frac{(\omega_{\text{max}} - \omega_{\text{min}})}{(\omega_{\text{max}} + \omega_{\text{min}})}$$

Coefficient of energy fluctuation

$$K_E = \frac{\text{Change in } E}{E} \quad \text{(from } N_{\text{max}} \text{ to } N_{\text{min}})$$

Required moment of inertia

$$I = \frac{K_E E}{K_N \omega_{\text{mean}}^2}$$

where: $\omega_{\text{mean}} = \frac{(\omega_{\text{max}} + \omega_{\text{min}})}{2}$

Example The power of an engine is 100 kW at a mean speed of 250 rev min$^{-1}$. The energy to be absorbed by the flywheel between maximum and minimum speeds is 10% of the work done per revolution.

Calculate the required moment of inertia for the flywheel if the speed fluctuation is not to exceed 2%.

$K_N = 0.02$, $K_E = 0.1$, $\omega_{\text{mean}} = \frac{2\pi \times 250}{60} = 26.2 \text{ rad s}^{-1}$

Energy per revolution $E = \frac{100000 \times 60}{250} = 24000 J$

Therefore: $I = \frac{0.1 \times 24000}{0.02 \times 26.2^2} = 175 \text{ kg} \cdot \text{m}^2$

Values of I and k (radius of gyration)

Solid disk:

Mass $m = \rho \pi r^2 b$

Radius of gyration $k = \frac{r}{\sqrt{2}}$

Moment of inertia $I = mk^2 = \frac{mr^2}{2} = \frac{\rho \pi r^4 b}{2}$

Example For flywheel in previous example ($I = 175 \text{ kg} \cdot \text{m}^2$). If the flywheel is a solid disc with thickness $\frac{1}{6}$ of the diameter, and the density is 7000 kg m^{-3}, determine the dimensions.

$$I = \frac{\rho \pi r^4 b}{2} \quad \text{and if } b = \frac{r}{3}, \quad I = \frac{\rho \pi r^5}{2} \quad \text{and } r = \frac{\sqrt{I}}{\sqrt[3]{\pi \rho}}$$

Therefore $r = \frac{\sqrt{6 \times 175}}{\sqrt[3]{\pi \times 7000}} = 0.544 \text{ m}$.

Thus: diameter $D = 1088 \text{ mm}$, thickness $b = 181 \text{ mm}$.
Annular ring:
\[m = \rho n (r_2^2 - r_1^2) b \]
\[k = \sqrt{\frac{r_2^2 + r_1^2}{2}} \]
\[l = m \frac{(r_2^2 + r_1^2)}{2} \]

Thin ring:
If: \(r_m = \text{mean radius}, A = \text{cross-sectional area}. \)
\[m = 2 \pi r_m A \rho \]
\[k = r_m \]
\[l = m r_m \]

Spokes of uniform cross-section:
\[m = \rho (r_2 - r_1) A \]
\[k = \frac{r_2^2 + r_1^2 + r_2^2}{3} \]
\[l_s = mk^2 \]
Spoked wheel:
The hub and rim are regarded as annular rings.
\[l = l_{hub} + l_{rim} + nl_s \]
where: \(n = \text{number of spokes}. \)

2.4.3 Hooke's joint (cardan joint)

This is a type of flexible shaft coupling used extensively for vehicle drives. They are used in pairs when there is parallel misalignment.

Symbols used:
\(N_1 = \text{input speed} \)
\(N_2 = \text{output speed} \)
\(\alpha = \text{angle of input to output shaft} \)
\(\theta = \text{angle of rotation} \)

\[\frac{N_2}{N_1} = \frac{\cos \alpha}{1 - \sin^2 \alpha \cos^2 \alpha} \]

Maximum speed ratio = \(\frac{1}{\cos \alpha} \) (at \(\theta = 0^\circ \) or \(180^\circ \))
Minimum speed ratio = \(\cos \alpha \) (at \(\theta = 90^\circ \) or \(270^\circ \))
\[\frac{N_2}{N_1} = 1, \text{ when } \theta = \cos^{-1} \frac{1 \pm 1}{\sqrt{1 + \cos \alpha}} \]
2.4.4 Cams

A cam is a mechanism which involves sliding contact and which converts one type of motion into another, e.g. rotary to reciprocating. Most cams are of the radial type, but axial rotary cams are also used. Cams may have linear motion. The motion is transmitted through a 'follower' and four types are shown for radial cams.

Tangent cam with roller follower

On the flank:
Lift \(y = (r_1 + r_2) \sec \theta - 1 \)

where: \(\theta \) = angle of rotation.

Velocity \(v = \omega (r_1 + r_2) \sec \theta \tan \theta \)

where: \(\omega = \frac{d\theta}{dt} \) the angular velocity.

Acceleration \(a = \omega^2 (r_1 + r_2) \frac{(1 + 2 \tan^2 \theta)}{\cos \theta} \)

On the nose: the system is equivalent to a conrod/crank mechanism with crank radius \(d \) and conrod length \((r_1 + r_2) \) (see Section 2.4.1).

Maximum lift \(y_{\text{max}} = d - r_1 + r_2 \)

Circular arc cam with flat follower

On flank:
Lift \(y = (R - r_1)(1 - \cos \theta) \)

Velocity \(v = \omega (R - r_1) \sin \theta \)

Acceleration \(a = \omega^2 (R - r_1) \cos \theta \)

On nose:
Lift \(y = (r_2 - r_1) + d \cos(\alpha - \theta) \)

Velocity \(v = \omega d \sin(\alpha - \theta) \)

Acceleration \(a = -\omega^2 d \cos(\alpha - \theta) \)

Maximum lift \(y_{\text{max}} = d - r_1 + r_2 \)
Simple harmonic motion cam

Lift \(y = d(1 - \cos \theta) \)
where: \(d = \) eccentricity.

Velocity \(v = \omega d \sin \theta \)
Acceleration \(a = \omega^2 d \cos \theta \)
Maximum lift \(y_{\text{max}} = d \)

The shape of the cam is a circle.

Constant velocity cam, knife-edge follower

Lift \(y = y_{\text{max}} \left(\frac{\theta}{\theta_{\text{max}}} \right) \)
where: \(\theta_{\text{max}} = \) angle for \(y_{\text{max}} \).

Constant acceleration and deceleration cam, roller follower

The following refers to the motion of the roller centre.

Lift \(y = 2y_{\text{max}} \left(\frac{\theta}{\theta_{\text{max}}} \right)^2 \) (for first half of lift).

\[
y = 2y_{\text{max}} \left[\frac{1}{2} - \left(\frac{\theta_{\text{max}} - \theta}{\theta_{\text{max}}} \right)^2 \right] \] (for second half of lift).

Velocity \(v = \frac{4\omega y_{\text{max}} \theta}{\theta_{\text{max}}^2} \) (for first half of lift)

\[
v = 4\omega y_{\text{max}} \frac{(\theta_{\text{max}} - \theta)}{\theta_{\text{max}}^2} \] (for second half of lift)

Acceleration and deceleration \(a = \frac{4\omega^2 y_{\text{max}}}{\theta_{\text{max}}^2} \) (constant)

Axial cam (face cam)

The cam profile is on the end of a rotating cylinder and the follower moves parallel to the cylinder axis.
2.4.5 Governors

A governor is a device which controls the speed of an engine, a motor or other machine by regulating the fuel or power supply. The controlled speed is called the 'isochronous speed'. Electronic systems are also available.

Watt governor

Isochronous speed \(N = \frac{1}{2\pi} \sqrt{\frac{a}{h}} \)

![Watt governor diagram]

Porter governor

\[N = \frac{1}{2\pi} \sqrt{\left(1 + \frac{m_1}{m_2}\right) \frac{a}{h}} \]

![Porter governor diagram]

Hartnell governor

\[N = \frac{1}{2\pi} \sqrt{\frac{k}{2m \left(\frac{b}{a} \right)^2}} \]

Where: \(k = \) spring stiffness.

Initial spring force \(F_o = k \frac{bc}{a} \), when \(a = 0 \).

![Hartnell governor diagram]

2.4.6 Screw threads

Screw threads are used in fasteners such as bolts and screws, and also to provide a linear motion drive which may transmit power. There are several different types of screw thread used for different purposes.

Power transmission (see also Section 2.7.2)

Symbols used:

- \(D = \) mean diameter of thread
- \(p = \) pitch of thread
- \(\theta = \) thread angle \(= \tan^{-1} \frac{P}{\pi D} \)
- \(\phi = \) friction angle \(= \tan^{-1} \mu \)
- \(\mu = \) coefficient of friction

Mechanical advantage \(MA = \frac{1}{\tan(\theta + \phi)} \)

Velocity ratio \(VR = \frac{1}{\tan \theta} = \frac{\pi D}{\tan \theta} \)

Efficiency \(= \frac{MA}{VR} = \frac{\tan \theta}{\tan(\theta + \phi)} \)
Effective coefficient of friction (vee thread) \(\mu_e = \mu \sec \beta \)

where: \(\beta = \) half angle thread.

Vee thread

The vee thread is used extensively for nuts, bolts and screws. The thread may be produced by machining but rolling is much cheaper.

\[
\begin{align*}
0.137P & \quad 0.64P \\
\end{align*}
\]

Whitworth thread

Acme thread

Used for power transmission. Has greater root strength and is easier to machine than the square thread. Used for lathe lead screw.

Square thread

Used for power transmission. The friction is low and there is no radial force on the nut.

Buttress thread

A power screw with the advantages of both square and Acme threads. It has the greatest strength but takes a large load in one direction only (on the vertical face).

Multi-start thread

This gives a greater pitch with the same thread depth. The nut advance per revolution (lead) is equal to the pitch multiplied by the number of 'starts'.

Ball-bearing power screw

The friction is extremely low and hence the efficiency is high. The power is transmitted by balls between the
threads on nut and screw. The balls circulate continuously.

2.4.7 Coefficient of friction for screw threads

This ranges from 0.12 to 0.20 with an average value of 0.15. It is however much lower for the ball-bearing thread.

2.5 Automobile mechanics

The resistance of a vehicle to motion is made up of 'rolling resistance', 'gradient force' and 'aerodynamic drag'. From the total resistance and a knowledge of the overall efficiency of the drive, the power can be calculated. Additional power is required to accelerate the vehicle. Braking torque is also dealt with.

2.5.1 Rolling resistance

Symbols used:
- $C_r =$ coefficient of rolling resistance
- $m =$ mass of vehicle
- $v =$ speed (km h$^{-1}$)
- $p =$ tyre pressure (bars)

$F_r = C_r mg$

For pneumatic tyres on dry road

$$C_r = 0.005 + \frac{1}{p} \left[0.01 + 0.0095 \left(\frac{v}{100} \right)^2 \right]$$

<table>
<thead>
<tr>
<th>Surface Type</th>
<th>C_r</th>
<th>C_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt or concrete, new</td>
<td>0.01</td>
<td>gravel, rolled, new</td>
</tr>
<tr>
<td>Asphalt or concrete, worn</td>
<td>0.02</td>
<td>gravel, loose, worn</td>
</tr>
<tr>
<td>Cobbles, small, new</td>
<td>0.01</td>
<td>soil, medium hard</td>
</tr>
<tr>
<td>Cobbles, large, worn</td>
<td>0.03</td>
<td>sand</td>
</tr>
</tbody>
</table>

2.5.2 Gradient force

$F_g = mg \sin \theta$
2.5.3 **Aerodynamic drag**

Symbols used:
- \(C_d \) = drag coefficient
- \(A_f \) = frontal area (approx. 0.9 bh m\(^2\))
- \(\rho \) = air density (\(\approx 1.2 \text{ kg m}^{-3} \))
- \(v \) = velocity (m s\(^{-1}\))

Aerodynamic drag force:

\[
F_d = C_d A_f \rho \frac{v^2}{2}
\]

Typical values of drag coefficient

<table>
<thead>
<tr>
<th>(C_d)</th>
<th>(C_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sports car, sloping rear</td>
<td>0.2–0.3</td>
</tr>
<tr>
<td>Saloon, stepped rear</td>
<td>0.4–0.5</td>
</tr>
<tr>
<td>Convertible, open top</td>
<td>0.6–0.7</td>
</tr>
<tr>
<td>Bus</td>
<td>0.6–0.8</td>
</tr>
<tr>
<td>Truck</td>
<td>0.8–1.0</td>
</tr>
<tr>
<td>Motorcycle and rider</td>
<td>1.8</td>
</tr>
<tr>
<td>Flat plate normal to flow</td>
<td>1.2</td>
</tr>
<tr>
<td>Sphere</td>
<td>0.47</td>
</tr>
<tr>
<td>Long stream-lined body</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Total force \(F_t = F_d + F_s + F_a \)

2.5.4 **Traction effort**

Symbols used:
- \(\mu \) = coefficient of adhesion
- \(R_w \) = load on wheel considered

The horizontal force at which slipping occurs:

\[
F_m = \mu R_w
\]

Coefficient of adhesion for different surfaces

<table>
<thead>
<tr>
<th>(\mu)</th>
<th>(\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete/asphalt, dry</td>
<td>0.8–0.9</td>
</tr>
<tr>
<td>Concrete/asphalt, wet</td>
<td>0.4–0.7</td>
</tr>
<tr>
<td>Gravel, rolled, dry</td>
<td>0.6–0.7</td>
</tr>
<tr>
<td>Gravel, rolled, wet</td>
<td>0.3–0.5</td>
</tr>
<tr>
<td>Clay, dry</td>
<td>0.5–0.6</td>
</tr>
<tr>
<td>Sand, loose</td>
<td>0.3–0.4</td>
</tr>
<tr>
<td>Ice, dry</td>
<td>0.2</td>
</tr>
<tr>
<td>Ice, wet</td>
<td>0.1</td>
</tr>
</tbody>
</table>

2.5.5 **Power, torque and efficiency**

Let:
- \(F_t \) = total resistance
- \(v \) = velocity
- \(\eta_o \) = overall transmission efficiency
- \(P_r \) = required engine power
- \(T_r \) = engine torque
- \(N_e \) = engine speed
- \(N_w \) = wheel speed
- \(r \) = wheel effective radius
- \(F_w \) = wheel force (4 wheels)
Engine power $P_e = \frac{F_v}{\eta_o}$

Engine torque $T_e = \frac{P_e}{2\pi N_e}$

Wheel force (for 4 wheels) $F_w = \frac{T_e \eta_o \eta_e}{N_e \eta_w}$

Acceleration power $P_a = m a v_i$

where: $a =$ acceleration, $v_i =$ instantaneous speed.

Transmission efficiency:

Overall efficiency $\eta_o = \eta_c \eta_g \eta_d \eta_s$

Typical values are given in the table.

<table>
<thead>
<tr>
<th>Efficiency</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutch efficiency</td>
<td>0.99</td>
</tr>
<tr>
<td>Gearbox efficiency</td>
<td>0.98 direct drive, 0.95 low gears</td>
</tr>
<tr>
<td>Drive shaft, joints and bearings</td>
<td>0.99</td>
</tr>
<tr>
<td>Axle efficiency</td>
<td>0.95</td>
</tr>
<tr>
<td>Overall efficiency</td>
<td>0.90 direct drive, 0.85 low gears</td>
</tr>
</tbody>
</table>

2.5.6 Braking torque

Let:

$I =$ moment of inertia of a pair of wheels

$\alpha =$ angular deceleration of wheels

$m =$ mass of vehicle

$\mu =$ coefficient of friction between wheels and road

Front wheels torque $T_f = \mu r m g \frac{(a - \mu h)}{L}$

Rear wheels torque $T_r = \mu r m g \frac{(a - \mu h)}{L}$

Wheel inertia torque $T_i = I \alpha$

Deceleration $d = \mu g$

Total braking torque (for one wheel):

$T_{bd} = \frac{T_r}{2} + T_f$ (front)

$T_{br} = \frac{T_r}{2} + T_i$ (rear)

2.6 Vibrations

2.6.1 Simple harmonic motion

Let:

$x =$ displacement

$X =$ maximum displacement

$t =$ time

$f =$ frequency

$\tau_p =$ periodic time

$m =$ vibrating mass

$k =$ spring stiffness

$\phi =$ phase angle

$\theta =$ angle of rotation
Definition of simple harmonic motion

Referring to the figure, point A rotates with constant angular velocity \(\omega \) at radius AB. The projection of A on to PQ, i.e. A', moves with simple harmonic motion. If A'B is plotted to a base of the angle of rotation \(\theta \), a so-called 'sine curve' is produced. The base of the graph can also represent time. The time for one complete rotation is the 'periodic time' \(t_p \).

If AB = X and A'B = x, then \(x = X \sin \omega t \), where \(\omega = \frac{\theta}{t} \).

Periodic time \(t_p = \frac{2\pi}{\omega} \)

Frequency \(f = \frac{1}{t_p} = \frac{\omega}{2\pi} \)

2.6.2 Free undamped vibration

Spring mass system

\(x = X \cos (\omega_n + \phi), \)

where: \(\omega_n = \sqrt{\frac{k}{m}} \)

Frequency of vibration \(f_n = \frac{\omega_n}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{g}{x_s}} \)

where \(x_s \) = static deflection

Periodic time \(t_p = \frac{1}{f_n} \)

Torsional vibration

Displacement \(\theta = \theta_{\text{max}} \cos (\omega_n + \phi) \)

Frequency \(f_n = \frac{\omega_n}{2\pi} \)

\(\omega_n = \sqrt{\frac{T_o}{I}} \). Where: \(T_o \) = torque per unit angle of twist, \(I \) = moment of inertia of oscillating mass.

2.6.3 Free damped vibration

Critical frequency \(\omega_c = \frac{c}{2m} \)

where: \(c \) = damping force per unit velocity

Damping ratio \(R = \frac{\omega_c}{\omega_n} \)
Light damping

Oscillations are produced which decrease in amplitude with time.

\[x = Ce^{-\omega_d t} \cos \omega_d t \]

where: \(C = \text{constant} \), \(\omega_d = \sqrt{\omega_n^2 - \omega_c^2} \)

Periodic time \(t_p = \frac{2\pi}{\omega_d} \)

Amplitude ratio \(AR = \frac{\text{Initial amplitude}}{\text{Amplitude after } n \text{ cycles}} = e^{n\omega_d t} \)

AR is a measure of the rate at which the amplitude falls with successive oscillations.

Torsional vibration \(\theta = Ce^{-\omega_d t} \cos \omega_d t \)

Critical damping

In this case the damping is just sufficient to allow oscillations to occur: \(\omega_c = \omega_n \).

\[x = Ce^{-\omega_c t} \]

where: \(C = \text{constant} \).

Heavy damping

The damping is heavier than critical and \(\omega_c > \omega_n \).

\[x = Ae^{-at} + Be^{-bt} \]

where: \(A, B, a \) and \(b \) are constants.

2.6.4 Forced damped vibration

A simple harmonic force of constant amplitude applied to mass

Let the applied force be \(F_a = F \cos \omega t \). When steady conditions are attained the mass will vibrate at the frequency of the applied force. The amplitude varies with frequency as follows:

\[
Q = \frac{\text{Actual amplitude of vibration}}{\text{Amplitude for a static force } F}
\]

and

\[
Q = \frac{1}{\sqrt{1 - r^2}^2 + 4R^2r^2}
\]
where: $R = \frac{\omega}{\omega_n}$ and $r = \frac{\omega}{\omega_n}

\text{Phase angle } \alpha = \tan^{-1} \frac{2Rr}{(1 - r^2)}$

Simple harmonic force of constant amplitude applied to base

$F_a = F \cos \omega t$

$Q = \frac{1 + 4R^2r^2}{\sqrt{(1 - r^2)^2 + 4R^2r^2}}; \alpha = \tan^{-1} \frac{2Rr}{(1 - r^2)}$

Simple harmonic force applied to mass due to rotary unbalance

$F = m_r \omega^2 \cos \omega t$ (due to mass m_r rotating at radius a angular velocity ω)

$Q = \frac{r^2}{\sqrt{(1 - r^2)^2 + 4R^2r^2}}; \alpha = \tan^{-1} \frac{2Rr}{(1 - r^2)}$
2.6.5 Three mass vibration system

Natural frequency $\omega_n = \sqrt{\frac{A \pm B}{2}}$ (two values)

$$A = \left(\frac{k_1}{m_1} + \frac{k_1}{m_1} + \frac{k_2}{m_2} + \frac{k_3}{m_3}\right)^2; \quad B = \sqrt{\left\{A^2 - k_1 k_2 \left(\frac{1}{m_1 m_2} + \frac{1}{m_2 m_3} + \frac{1}{m_1 m_3}\right)\right\}}$$

If m_3 is infinite it is equivalent to a wall, hence:

$$A = \left(\frac{k_1}{m_1} + \frac{k_1}{m_1} + \frac{k_2}{m_2}\right)^2; \quad B = \sqrt{\left\{A^2 - \frac{k_1 k_2}{m_1 m_2}\right\}}$$

2.7 Friction

2.7.1 Friction laws

For clean dry surfaces the following laws apply approximately. The friction force is proportional to the perpendicular force between contacting surfaces and is independent of the surface area or rubbing speed. This only applies for low pressures and speeds. There are two values of friction coefficient, the 'static' value when motion is about to commence, and the 'dynamic' value, which is smaller, when there is motion.

Coefficient of friction $\mu = \frac{F}{N}$

2.7.2 Friction on an inclined plane

Force parallel to plane:

$F = W(\mu \cos \theta + \sin \theta)$ (up plane)

$F = W(\mu \cos \theta - \sin \theta)$ (down plane)

2.7.3 Rolling friction

The force to move a wheeled vehicle $F_r = \mu_r N$

where: $\mu_r =$ rolling coefficient of resistance, $N =$ wheel reaction.
2.7.4 The wedge

Wedge angle \(\alpha = \tan^{-1} \left(\frac{b}{2h} \right) \)

Force \(Q \) normal to wedge face \(F = 2Q(\mu \cos \alpha + \sin \alpha) \)

Force \(Q \) normal to force \((F) \), \(F = 2Q \tan(\alpha + \phi) \)
where: \(\mu = \tan \phi \).

2.7.5 Friction of screw thread

Square section thread

Thread angle \(\theta = \tan^{-1} \left(\frac{np}{\pi D} \right) \) (for one start)

\(\theta = \tan^{-1} \left(\frac{np}{\pi D} \right) \) (for \(n \) starts)

Torque to lower load \(T_L = \frac{WD}{2} \tan(\theta - \phi) \)

Torque to raise load \(T_R = \frac{WD}{2} \tan(\theta + \phi) \)

Efficiency \(\eta = \frac{\tan \theta}{\tan(\theta + \phi)} \)

Maximum efficiency \(\eta_{\text{max}} = \frac{(1 - \sin \phi)}{(1 + \sin \phi)} \) \(\begin{cases} \theta = \left(\frac{\pi - \phi}{2} \right) \\ \end{cases} \)

Mechanical advantage \(MA = \frac{W}{F} = \cot(\theta + \phi) \)

Velocity ratio \(VR = \frac{\pi D}{p} \)

Vee thread

For a vee thread the 'effective coefficient of friction'
\(\mu_e = \mu \sec \beta \)
where: $\beta =$ half angle of thread.

Example For $\beta = 30^\circ$, $\mu_e = 1.155 \mu$.

2.7.6 Tables of friction coefficients

The following tables give coefficients of friction for general combinations of materials, clutch and brake materials, machine tool slides and for rubber on asphalt and concrete.

General materials

<table>
<thead>
<tr>
<th>Materials</th>
<th>Lubrication</th>
<th>Coefficient of friction (low pressure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal on metal</td>
<td>Dry</td>
<td>0.20 average</td>
</tr>
<tr>
<td>Bronze on bronze</td>
<td>Dry</td>
<td>0.20</td>
</tr>
<tr>
<td>Bronze on cast iron</td>
<td>Dry</td>
<td>0.21</td>
</tr>
<tr>
<td>Cast iron on cast iron</td>
<td>Slightly lubricated</td>
<td>0.15</td>
</tr>
<tr>
<td>Cast iron on hardwood</td>
<td>Dry</td>
<td>0.49</td>
</tr>
<tr>
<td>Cast iron on hardwood</td>
<td>Slightly lubricated</td>
<td>0.19</td>
</tr>
<tr>
<td>Metal on hardwood</td>
<td>Dry</td>
<td>0.60 average</td>
</tr>
<tr>
<td>Metal on hardwood</td>
<td>Slightly lubricated</td>
<td>0.20 average</td>
</tr>
<tr>
<td>Leather on metal</td>
<td>Dry</td>
<td>0.4 average</td>
</tr>
<tr>
<td>Rubber on metal</td>
<td>Dry</td>
<td>0.40</td>
</tr>
<tr>
<td>Rubber on road</td>
<td>Dry</td>
<td>0.90 average</td>
</tr>
<tr>
<td>Nylon on steel</td>
<td>Dry</td>
<td>0.3–0.5</td>
</tr>
<tr>
<td>Acrylic on steel</td>
<td>Dry</td>
<td>0.5</td>
</tr>
<tr>
<td>Teflon on steel</td>
<td>Dry</td>
<td>0.04</td>
</tr>
<tr>
<td>Metal on ice</td>
<td>—</td>
<td>0.02</td>
</tr>
<tr>
<td>Cermet on metal</td>
<td>Dry</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Clutches and brakes

<table>
<thead>
<tr>
<th>Materials</th>
<th>Coefficient of friction</th>
<th>Maximum temperature (°C)</th>
<th>Maximum pressure (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast iron/cast iron</td>
<td>0.05</td>
<td>150</td>
<td>8</td>
</tr>
<tr>
<td>Cast iron/steel</td>
<td>0.06</td>
<td>250</td>
<td>8–13</td>
</tr>
<tr>
<td>Hard steel/hard steel</td>
<td>0.05</td>
<td>250</td>
<td>7</td>
</tr>
<tr>
<td>Hard steel/chrome-plated hard steel</td>
<td>0.03</td>
<td>250</td>
<td>13</td>
</tr>
<tr>
<td>Hard drawn phosphor bronze/</td>
<td>0.03</td>
<td>250</td>
<td>10</td>
</tr>
<tr>
<td>hard drawn chrome plated steel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powder metal/cast iron or steel</td>
<td>0.05–0.1</td>
<td>500</td>
<td>10</td>
</tr>
</tbody>
</table>
Clutches and brakes (continued)

<table>
<thead>
<tr>
<th>Materials</th>
<th>Coefficient of friction</th>
<th>Maximum temperature (°C)</th>
<th>Maximum pressure (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powder metal/chrome plated hard steel</td>
<td>0.05–0.1</td>
<td>500</td>
<td>20</td>
</tr>
<tr>
<td>Wood/cast iron or steel</td>
<td>0.16</td>
<td>150</td>
<td>6</td>
</tr>
<tr>
<td>Leather/cast iron or steel</td>
<td>0.12–0.15</td>
<td>100</td>
<td>2.5</td>
</tr>
<tr>
<td>Cork/cast iron or steel</td>
<td>0.15–0.25</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Felt/cast iron or steel</td>
<td>0.18</td>
<td>140</td>
<td>0.6</td>
</tr>
<tr>
<td>Vulcanized paper or fibre/cast iron or steel</td>
<td>—</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>Woven asbestos/cast iron or steel</td>
<td>0.1–0.2</td>
<td>250</td>
<td>7–14</td>
</tr>
<tr>
<td>Moulded asbestos/cast iron or steel</td>
<td>0.08–0.12</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>Impregnated asbestos/cast iron or steel</td>
<td>0.12</td>
<td>350</td>
<td>10</td>
</tr>
<tr>
<td>Asbestos in rubber/cast iron or steel</td>
<td>—</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>Carbon graphite/steel</td>
<td>0.05–0.1</td>
<td>500</td>
<td>20</td>
</tr>
<tr>
<td>Moulded phenolic plastic with cloth base/cast iron or steel</td>
<td>0.1–0.15</td>
<td>150</td>
<td>7</td>
</tr>
</tbody>
</table>

Band brake materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Lubrication</th>
<th>Coefficient of friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leather belt/wood</td>
<td>Well lubricated</td>
<td>0.47</td>
</tr>
<tr>
<td>Leather belt/cast iron</td>
<td>Well lubricated</td>
<td>0.12</td>
</tr>
<tr>
<td>Leather belt/cast iron</td>
<td>Slightly lubricated</td>
<td>0.28</td>
</tr>
<tr>
<td>Leather belt/cast iron</td>
<td>Very slightly lubricated</td>
<td>0.38</td>
</tr>
<tr>
<td>Steel band/cast iron</td>
<td>Dry</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Machine tool slides

<table>
<thead>
<tr>
<th>Materials</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast iron/cast iron</td>
<td>0.15</td>
<td>0.20</td>
<td>0.20</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>Cast iron/steel</td>
<td>0.15</td>
<td>0.20</td>
<td>0.25</td>
<td>0.30</td>
<td>0.35</td>
</tr>
<tr>
<td>Steel/steel</td>
<td>0.15</td>
<td>0.25</td>
<td>0.30</td>
<td>0.35</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Rubber - sliding

<table>
<thead>
<tr>
<th>Surface</th>
<th>Wet</th>
<th>Dry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>0.25–0.75</td>
<td>0.50–0.80</td>
</tr>
<tr>
<td>Concrete</td>
<td>0.45–0.75</td>
<td>0.60–0.85</td>
</tr>
</tbody>
</table>
2.8 Brakes, clutches and dynamometers

2.8.1 Band brake

In the simple band brake a force is applied through a lever to a band wrapped part of the way around a drum. This produces tensions in the band and the difference between these multiplied by the drum radius gives the braking torque.

Let:

- \(T \) = braking torque
- \(P \) = braking power
- \(F \) = applied force
- \(p \) = maximum pressure on friction material
- \(\mu \) = coefficient of friction
- \(N \) = speed of rotation
- \(a \) = lever arm
- \(b \) = belt width
- \(\theta \) = angle of lap of band
- \(r \) = drum radius
- \(c \) = distance from belt attachment to fulcrum

Power \(P = 2\pi NT \)

Torque \(T = r(F_1 - F_2) \)

\[
F_1 = brp; \quad F_2 = F \frac{a}{c} \frac{F_1}{F_2} = ce^\theta
\]

Differential band brake

In this case the dimensions can be chosen so that the brake is 'self-locking', i.e. no force is required, or it can operate in the opposite direction.

\[
F = \frac{F_1 c_2 - F_1 c_1}{a} = F_2 (c_2 - c_1 e^{\theta})
\]

If \(c_1 e^{\theta} \) is greater than \(c_2 \), the brake is self-locking.

2.8.2 Block brake

The friction force is applied through a block made of, or lined with, a friction material. The brake can operate with either direction of rotation, but the friction torque is greater in one direction than the other. As in all friction brakes the limiting factor is the allowable pressure on the friction material.

Friction torque \(T = \frac{Fa \mu}{c + \mu b} \)

Pressure \(p = \frac{Fa}{(c + \mu b)A} \)

where: \(A \) = block contact area.

Use the positive sign for directions shown in the figure and the negative sign for opposite rotation (greater torque).

Double block brake, spring set

To achieve a greater friction torque, two blocks are used. This also results in zero transverse force on the
drum. In this type of brake the force is provided by a spring which normally keeps the brake applied. Further compression is necessary to release the brake. This type of brake is used for lifts, for safety reasons.

Friction torque \(T = F a r \mu \left[\frac{1}{(c + \mu b)} + \frac{1}{(c - \mu b)} \right] \)

Maximum pressure \(p = \frac{F a}{(c - \mu b) A} \)

where: \(F = \) spring force.

The brake is released by a force greater than \(F \).

2.8.3 Internally expanding shoe brake

This type is used on vehicles and has two shoes, lined with friction material, which make contact with the inside surface of a hollow drum. For rotation as shown in the figure:

Friction torque \(T = K \left(\frac{F a r}{(c + \mu b)} \right) \)

Average pressure \(p_a = \frac{T}{2\mu w r^2 \sin \theta} \)

Maximum pressure \(p_m = K p_a \)

Block brake with long shoe

Here the friction force is applied around a large angle. The torque is increased by a factor \(K \) which is a function of the angle of contact. The shoe subtends an angle of \(2\theta \) and is pivoted at 'h' where

\[h = Kr; K = \frac{4 \sin \theta}{(2\theta + \sin 2\theta)} \]

Total torque \(T = T_L + T_R \)

with \(K \) as previously.

Maximum pressure \(p_m = \frac{T_R}{2\mu w r^2 \sin \theta} \)

Average pressure \(p_a = \frac{p_m}{K} \)

2.8.4 Disk brake

Let:

- \(F = \) force on pad
- \(r = \) mean radius of pad
- \(A = \) pad area

Torque capacity (2 pads) \(T = 2\mu Fr \)

Pad pressure \(p = \frac{F}{A} \)
2.8.5 Disk clutch

The simplest type of clutch is the single-plate clutch in which an annular plate with a surface of friction material is forced against a metal disk by means of a spring, or springs, or by other means. There are two theories which give slightly different values of torque capacity.

Uniform-wear theory

Let:
\[F = \text{spring force} \]
\[r_o = \text{outer radius of friction material} \]
\[r_i = \text{inner radius of friction material} \]

Maximum torque capacity
\[T = F \frac{(r_o + r_i)}{2} \]

Maximum pressure
\[p_m = \frac{F}{2\pi r_i (r_o - r_i)} \]

Uniform-pressure theory

\[T = \frac{3}{2} F \mu \frac{(r_o^2 - r_i^2)}{(r_o^2 - r_i^2)} \]
\[p = \frac{F}{\pi (r_o^2 - r_i^2)} \]

2.8.6 Cone clutch

By angling the contacting surfaces, the torque capacity is increased; for example, for an angle of 9.6° the capacity is increased by a factor of 6.

\[\theta = \text{cone angle (to the shaft axis, from 8° upwards).} \]

The theory is the same as for the disk clutch but with an effective coefficient of friction
\[\mu' = \frac{\mu}{\sin \theta} \]

2.8.7 Multi-plate disk clutch

A number of double-sided friction plates may be mounted on splines on one element, and corresponding steel contacting plates on splines on the other element. The assembly is compressed by a spring or springs to give a torque capacity proportional to the number of pairs of contacting surfaces.

Torque capacity
\[T = n \times \text{torque for one plate} \]

where: \[n = \text{number of pairs of surfaces (6 in the example shown in the figure).} \]

2.8.8 Centrifugal clutch

Internally expanding friction shoes are held in contact, by the force due to rotation against the force of a light spring. The torque capacity increases as the speed increases.
Let:
\(m \) = mass of shoe
\(k \) = spring stiffness
\(x \) = deflection of spring
\(\mu \) = coefficient of friction
\(F \) = radial force on drum
\(N \) = rotational speed
\(\omega \) = angular velocity

Torque capacity (2 shoes) \(T = 2 \mu r m r \omega^2 - k x \)

where: \(\omega = 2\pi N \).

2.8.9 Dynamometers

The power output of a rotary machine may be measured by means of a friction brake. The forces are measured by spring balances or load cells. Other types of dynamometer include fluid brakes and electric generators.

Torque absorbed \(T = r(F_1 - F_2) \)

Power \(P = 2\pi N T \)

2.9 Bearings

The full analysis of heavily loaded plain bearings is extremely complex. For so-called 'lightly-loaded bearings' the calculation of power loss is simple for both journal and thrust bearings.

Important factors are, load capacity, length to diameter ratio, and allowable pressure on bearing material.

Information is also given on rolling bearings.

2.9.1 Lightly loaded plain bearings

Let:
\(P \) = power
\(L \) = length
\(D \) = diameter
\(\mu \) = absolute viscosity
\(t \) = radial clearance
\(r_1 \) = inner radius
\(r_2 \) = outer radius
\(N \) = rotational speed
Journal bearing:

\[P = \frac{2\pi^3 N^2 D^3 L \mu}{t} \]

Thrust bearing:

\[P = \frac{2\pi^3 N^2 \mu (r_2^2 - r_1^2)}{t} \]

2.9.2 Load capacity for plain bearings

<table>
<thead>
<tr>
<th>Machine and bearing</th>
<th>Load capacity, (p) (MPa)</th>
<th>Length/diameter, (L/D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobile and aircraft engine main bearings</td>
<td>4–12</td>
<td>0.5–1.75</td>
</tr>
<tr>
<td>Automobile and aircraft engine crankpin bearings</td>
<td>4–23</td>
<td>0.5–1.50</td>
</tr>
<tr>
<td>Marine steam turbine main bearings</td>
<td>1.5–4</td>
<td>1.0–1.5</td>
</tr>
<tr>
<td>Marine steam turbine crankpin bearings</td>
<td>2–4</td>
<td>1.0–1.5</td>
</tr>
<tr>
<td>Land steam turbine main bearings</td>
<td>0.5–4</td>
<td>1.0–2.0</td>
</tr>
<tr>
<td>Generators and motors</td>
<td>0.3–1.0</td>
<td>1.0–2.5</td>
</tr>
<tr>
<td>Machine tools</td>
<td>0.4–2.0</td>
<td>1.5–4.0</td>
</tr>
<tr>
<td>Hoisting machinery</td>
<td>0.5–0.7</td>
<td>1.5–2.0</td>
</tr>
<tr>
<td>Centrifugal pumps</td>
<td>0.5–0.7</td>
<td>1.0–2.0</td>
</tr>
<tr>
<td>Railway axle bearings</td>
<td>2–2.5</td>
<td>1.5–2.0</td>
</tr>
</tbody>
</table>

Load capacity

\[p = \frac{W}{LD} \]

This assumes a uniform pressure; actually the maximum pressure is considerably higher.
2.9.3 Bearing materials

Metals

<table>
<thead>
<tr>
<th>Material</th>
<th>Brinell hardness</th>
<th>Thin shaft hardness</th>
<th>Load capacity, (p) (MPa)</th>
<th>Maximum temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin base babbitt</td>
<td>20–30</td>
<td>(\leq 150)</td>
<td>5.5–10.3</td>
<td>150</td>
</tr>
<tr>
<td>Lead base babbitt</td>
<td>15–20</td>
<td>(\leq 150)</td>
<td>5.5–8.0</td>
<td>150</td>
</tr>
<tr>
<td>Alkali-hardened lead</td>
<td>22–26</td>
<td>200–250</td>
<td>8.0–10.3</td>
<td>260</td>
</tr>
<tr>
<td>Cadmium base</td>
<td>30–40</td>
<td>200–250</td>
<td>10.3–15</td>
<td>260</td>
</tr>
<tr>
<td>Copper lead</td>
<td>20–30</td>
<td>200</td>
<td>10.3–16.5</td>
<td>175</td>
</tr>
<tr>
<td>Tin bronze</td>
<td>60–80</td>
<td>300–400</td>
<td>(\geq 30)</td>
<td>260</td>
</tr>
<tr>
<td>Lead bronze</td>
<td>40–70</td>
<td>300</td>
<td>20–30</td>
<td>225</td>
</tr>
<tr>
<td>Aluminium alloy</td>
<td>45–50</td>
<td>200–300</td>
<td>(\geq 30)</td>
<td>125</td>
</tr>
<tr>
<td>Silver plus overlay</td>
<td>25</td>
<td>300–400</td>
<td>(\geq 30)</td>
<td>260</td>
</tr>
</tbody>
</table>

Porous metals and non-metals

<table>
<thead>
<tr>
<th>Materials</th>
<th>Load capacity, (p) (MPa)</th>
<th>Maximum temperature (°C)</th>
<th>Maximum velocity, (v) (m s(^{-1}))</th>
<th>Maximum (pv) (MPa × m(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porous metals</td>
<td>30</td>
<td>75</td>
<td>7.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Rubber</td>
<td>0.35</td>
<td>75</td>
<td>5.0</td>
<td>0.525</td>
</tr>
<tr>
<td>Graphite materials</td>
<td>4</td>
<td>350</td>
<td>12.5</td>
<td>5.25 wet, 0.525 dry</td>
</tr>
<tr>
<td>Phenolics</td>
<td>35</td>
<td>95</td>
<td>12.5</td>
<td>0.525</td>
</tr>
<tr>
<td>Nylon</td>
<td>7</td>
<td>95</td>
<td>2.5</td>
<td>0.875</td>
</tr>
<tr>
<td>Teflon</td>
<td>3.5</td>
<td>265</td>
<td>1.2</td>
<td>0.35</td>
</tr>
</tbody>
</table>

2.9.4 Surface finish and clearance for bearings

<table>
<thead>
<tr>
<th>Type of service</th>
<th>Surface</th>
<th>Diametral clearance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Journal</td>
<td>Bearing</td>
</tr>
<tr>
<td>Precision spindles</td>
<td>Hardened ground steel</td>
<td>Lapped</td>
</tr>
<tr>
<td>(ND < 50 \times 10^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision spindles</td>
<td>Hardened ground steel</td>
<td>Lapped</td>
</tr>
<tr>
<td>(ND > 50 \times 10^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric motors, generators, etc.</td>
<td>Ground</td>
<td>Broached or reamed</td>
</tr>
<tr>
<td>General machinery, continuous running</td>
<td>Turned</td>
<td>Bored or reamed</td>
</tr>
<tr>
<td>Rough service machinery</td>
<td>Turned</td>
<td>1.5–3 (\mu)m</td>
</tr>
</tbody>
</table>

\(N = \text{revolutions per minute}, \ D = \text{diameter (mm)}.\)
2.9.5 Rolling bearings

The term 'rolling bearing' refers to both ball and roller bearings. Ball bearings of the journal type are used for transverse loads but will take a considerable axial load. They may also be used for thrust bearings. Rollers are used for journal bearings but will not take axial load. Taper roller bearings will take axial thrust as well as transverse load.

Advantages of rolling bearings

1. Coefficient of friction is low compared with plain bearings especially at low speeds. This results in lower power loss.
2. Wear is negligible if lubrication is correct.
3. They are much shorter than plain bearings and take up less axial space.

(4) Because of extremely small clearance they permit more accurate location; important for gears for example.
(5) Self-aligning types permit angular deflection of the shaft and misalignment.

Disadvantages of rolling bearings

1. The outside diameter is large.
2. The noise is greater than for plain bearings, especially at high speeds.
3. There is greater need of cleanliness when fitted to achieve correct life.
4. They cannot always be fitted, e.g. on crankshafts.
5. They are more expensive for small quantities but relatively cheap when produced in large quantities.
6. Failure may be catastrophic.

2.9.6 Types of rolling bearings

The following table lists the most common types of rolling bearings.

<table>
<thead>
<tr>
<th>Bearing Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball journal</td>
<td>Used for radial load but will take one third load axially. Deep grooved type now used extensively. Light, medium and heavy duty types available.</td>
</tr>
<tr>
<td>Angular contact ball journal</td>
<td>Takes a larger axial load in one direction. Must be used in pairs if load in either direction</td>
</tr>
<tr>
<td>Ball thrust</td>
<td>For axial loads only. Must have at least a minimum thrust</td>
</tr>
<tr>
<td>Self-aligning ball, single row</td>
<td>The outer race has a spherical surface mounted in a ring which allows for a few degrees of shaft misalignment</td>
</tr>
</tbody>
</table>
Self-aligning ball, double row

Two rows of balls in staggered arrangement. Outer race with spherical surface

Double row ball journal

Used for larger loads without increase in outer diameter

Roller journal

For high radial loads but no axial load. Allows axial sliding

Self-aligning spherical roller

Barrel shaped rollers. High capacity. Self-aligning

Taper roller

Takes radial and axial loads. Used in pairs for thrust in either direction

Needle rollers

These run directly on the shaft with or without cages. Occupy small space

Shields, seals and grooves

Shields on one or both sides prevent ingress of dirt. Seals allow packing with grease for life. A groove allows fitting of a circlip for location in bore.
2.9.7 Service factor for rolling bearings

The bearing load should be multiplied by the following factor when selecting a bearing.

<table>
<thead>
<tr>
<th>Type of load</th>
<th>Even</th>
<th>Uneven light shock</th>
<th>Moderate shock</th>
<th>Heavy shock</th>
<th>Very heavy shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service factor</td>
<td>1.0</td>
<td>1.2–1.5</td>
<td>1.7–2.0</td>
<td>2.2–2.5</td>
<td>2.7–3.0</td>
</tr>
</tbody>
</table>

2.9.8 Coefficient of friction for bearings

Plain bearings — boundary lubrication

- Mixed film (boundary plus hydrodynamic) $\mu = 0.02–0.08$
- Thin film $\mu = 0.08–0.14$
- Dry (metal to metal) $\mu = 0.20–0.40$

Plain journal bearings — oil bath lubrication

<table>
<thead>
<tr>
<th>Lubricant</th>
<th>Velocity (m s^{-1})</th>
<th>Pressure 7 bar</th>
<th>Pressure 30 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral grease</td>
<td>1.0</td>
<td>0.0076</td>
<td>0.00016</td>
</tr>
<tr>
<td>Mineral grease</td>
<td>2.5</td>
<td>0.0151</td>
<td>0.0027</td>
</tr>
<tr>
<td>Mineral oil</td>
<td>1.0</td>
<td>0.0040</td>
<td>0.0012</td>
</tr>
<tr>
<td>Mineral oil</td>
<td>2.5</td>
<td>0.0070</td>
<td>0.0020</td>
</tr>
</tbody>
</table>

Rolling bearings

- Self-aligning ball $\mu = 0.0016–0.0066$
- Rollers $\mu = 0.0012–0.0060$
- Thrust ball $\mu = 0.0013–0.0060$
- Deep groove ball $\mu = 0.0015–0.0050$
- Taper roller $\mu = 0.0025–0.0083$
- Spherical roller $\mu = 0.0029–0.0071$
- Angular contact $\mu = 0.0018–0.0019$

2.10 Gears

Gears are toothed wheels which transmit motion and power between rotating shafts by means of successively engaging teeth. They give a constant velocity ratio and different types are available to suit different relative positions of the axes of the shafts (see table). Most teeth are of the 'involute' type. The nomenclature for spur gears is given in the figures.
2.10.1 Classification of gears

<table>
<thead>
<tr>
<th>Type of gear</th>
<th>Relation of axes</th>
<th>Pitch surfaces</th>
<th>Elements of teeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spur</td>
<td>Parallel</td>
<td>Cylinder</td>
<td>Straight, parallel to axis</td>
</tr>
<tr>
<td>Parallel helical</td>
<td>Parallel</td>
<td>Cylinder</td>
<td>Helical</td>
</tr>
<tr>
<td>Herringbone</td>
<td>Parallel</td>
<td>Cylinder</td>
<td>Double helical</td>
</tr>
<tr>
<td>Straight bevel</td>
<td>Intersecting</td>
<td>Cone</td>
<td>Straight</td>
</tr>
<tr>
<td>Spiral bevel</td>
<td>Intersecting</td>
<td>Cone</td>
<td>Spiral</td>
</tr>
<tr>
<td>Crossed helical</td>
<td>Crossed but not intersecting</td>
<td>Cylinder</td>
<td>Helical</td>
</tr>
<tr>
<td>Worm</td>
<td>Right angle but not intersecting</td>
<td>Cylinder</td>
<td>Helical</td>
</tr>
</tbody>
</table>

2.10.2 Metric gear teeth

Metric module \(m = \frac{D}{T} \) (in millimetres)

where: \(D = \) pitch circle diameter, \(T = \) number of teeth. The preferred values of module are: 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40 and 50.

Circular pitch \(p = \frac{\pi D}{T} = \pi m \)

Addendum = \(m \)

Dedendum = \(1.25 m \)

Height of tooth = 2.25\(m \)

The figure shows the metric tooth form for a 'rack' (i.e. a gear with infinite diameter).
Design of gears

The design of gears is complex and it is recommended that British Standards (or other similar sources) be consulted. See BS 436 for the design of gears and BS 1949 for permissible stresses.

2.10.3 Spur gears

Symbols used:
- $F =$ tooth force
- $F_r =$ tangential component of tooth force
- $F_s =$ separating component of tooth force
- $\phi =$ pressure angle of teeth
- $D_1 =$ pitch circle diameter of driver gear
- $D_2 =$ pitch circle diameter of driven gear
- $N_1 =$ speed of driver gear
- $N_2 =$ speed of driven gear
- $n_1 =$ number of teeth in driver gear
- $n_2 =$ number of teeth in driven gear
- $P =$ power
- $T =$ torque
- $\eta =$ efficiency

Tangential force on gears $F_t = F \cos \phi$
Separating force on gears $F_s = F \tan \phi$

Torque on driver gear $T_1 = \frac{F_1 D_1}{2}$
Torque on driven gear $T_2 = \frac{F_2 D_2}{2}$

Speed ratio $\frac{N_1}{N_2} = \frac{D_2}{D_1} \frac{n_2}{n_1}$

Input power $P_i = 2\pi N_1 F_1 \frac{D_1}{2}$
Output power $P_o = 2\pi N_2 F_2 \frac{D_2}{2} \eta$

Efficiency $\eta = \frac{P_o}{P_i}$

Rack and pinion drive

For a pinion, pitch circle diameter D speed N and torque T:
- Rack velocity $V = \pi DN$
- Force on rack $F = \frac{2T}{D}$
- Rack power $P = FV\eta = 2\pi NT\eta$
where: $\eta =$ efficiency.

2.10.4 Helical spur gears

In this case there is an additional component of force F_a in the axial direction.
Let:
\(\phi_n = \) pressure angle normal to the tooth
\(\alpha = \) helix angle

Separating force \(F_s = F_t \frac{\tan \phi_n}{\cos \alpha} \)

Axial force \(F_a = F_t \tan \alpha \)

Double helical gears

To eliminate the axial thrust, gears have two sections with helices of opposite hand. These are also called 'herringbone gears'.

- Single helical gear
- Double helical gear

2.10.5 Bevel gears

Straight bevel gears

Let:
\(\phi = \) pressure angle of teeth
\(\beta = \) pinion pitch cone angle

Tangential force on gears = \(F_t \)
Separating force \(F_s = F_t \tan \phi \)
Pinion thrust \(F_p = F_s \sin \beta \)
Gear thrust \(F_g = F_s \cos \beta \)

Spiral bevel gear

Let:
\(\alpha = \) spiral angle of pinion
\(\phi_n = \) normal pressure angle

Force on pinion \(F_p = F_t \left[\frac{\tan \phi_n \sin \beta}{\cos \alpha} \pm \tan \alpha \cos \beta \right] \)

Force on gear \(F_g = F_t \left[\frac{\tan \phi_n \cos \beta}{\cos \alpha} \mp \tan \alpha \sin \beta \right] \)

For the diagram shown the signs are ' + ' for \(F_p \) and ' - ' for \(F_g \). The signs are reversed if the hand of the helix is reversed or the speed is reversed; they remain the same if both are reversed.
2.10.6 **Worm gears**

The worm gear is basically a screw (the worm) engaging with a nut (the gear). The gear is, in effect, a partial nut whose length is wrapped around in a circle.

Let:
- \(\phi_n \) = normal pressure angle
- \(\alpha \) = worm helix angle
- \(n_w \) = number of threads or starts on worm
- \(n_g \) = number of teeth in gear
- \(D_w \) = worm pitch circle diameter
- \(D_g \) = gear pitch circle diameter
- \(L \) = lead of worm
- \(p \) = pitch of worm threads and gear teeth
- \(\mu \) = coefficient of friction
- \(\eta \) = efficiency
- \(T_w \) = worm torque
- \(v \) = velocity of gear teeth
- \(N_w \) = speed of worm
- \(N_g \) = speed of gear

Tangential force on worm \(F_t \) = axial force on gear \(F_s = \frac{2T_w}{D_w} \)

Tangential force on gear \(F_i \) = axial force on worm = \(F_t \left(\frac{\cos \phi_n - \mu \tan \alpha}{\cos \phi_n \tan \alpha + \mu} \right) \)

Separating force on each component \(F_s = \frac{F_t}{\cos \phi_n \sin \alpha + \mu \cos \alpha} \)

\(\tan \alpha = \frac{L}{\pi D_w} \); \(L = p n_w \); \(D_w = \frac{p n_w}{\pi} \)

Efficiency \(\eta = \left(\frac{\cos \phi_n - \mu \tan \alpha}{\cos \phi_n + \mu \cot \alpha} \right) \)

Input power \(P_w = 2\pi N_w T_w \)

Gear tooth velocity \(v = \pi D_s N_g \)
Coefficient of friction for worm gears

<table>
<thead>
<tr>
<th>Velocity (m s(^{-1}))</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
<th>5.0</th>
<th>10.0</th>
<th>20.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard steel worm/phosphor bronze wheel</td>
<td>0.06</td>
<td>0.05</td>
<td>0.035</td>
<td>0.023</td>
<td>0.017</td>
<td>0.014</td>
</tr>
<tr>
<td>Cast iron worm/cast iron wheel</td>
<td>0.08</td>
<td>0.067</td>
<td>0.050</td>
<td>0.037</td>
<td>0.022</td>
<td>0.018</td>
</tr>
</tbody>
</table>

2.10.7 **Epicyclic gears**

The main advantage of an epicyclic gear train is that the input and output shafts are coaxial. The basic type consists of a 'sun gear' several 'planet gears' and a 'ring gear' which has internal teeth. Various ratios can be obtained, depending on which member is held stationary.

Ratio of output to input speed for various types

Let:

\[N = \text{speed} \]

\[n = \text{number of teeth} \]

Note that a negative result indicates rotation reversal.
3.1 Heat

3.1.1 Heat capacity

Heat capacity is the amount of heat required to raise the temperature of a body or quantity of substance by 1 K. The symbol is \(C \) (units joules per kelvin, J K\(^{-1}\)).

Heat supplied \(Q = C(t_2 - t_1) \)

where: \(t_1 \) and \(t_2 \) are the initial and final temperatures.

3.1.2 Specific heat capacity

This is the heat to raise 1 kg of substance by 1 K. The symbol is \(c \) (units joules per kilogram per kelvin, J kg\(^{-1}\) K\(^{-1}\)).

\[Q = mc(t_2 - t_1) \]

where: \(m \) = mass.

3.1.3 Latent heat

This is the quantity of heat required to change the state of 1 kg of substance. For example:

- Solid to liquid: specific heat of melting, \(h_f \) (J kg\(^{-1}\))
- Liquid to gas: specific heat of evaporation, \(h_v \) (J kg\(^{-1}\))

3.1.4 Mixing of fluids

If \(m_1 \) kg of fluid 1 at temperature \(t_1 \) is mixed with \(m_2 \) kg of fluid 2 at temperature \(t_2 \), then

Final mass \(m = m_1 + m_2 \) at a temperature

\[t = \frac{m_1 c_1 t_1 + m_2 c_2 t_2}{m_1 c_1 + m_2 c_2} \]

3.2 Perfect gases

3.2 Gas laws

For a so-called 'perfect gas':

- Boyle's law: \(pv = \text{constant for a constant temperature } T \)
- Charles' law: \(\frac{V}{T} = \text{constant for a constant pressure } p \)

where: \(p \) = pressure, \(V \) = volume, \(T \) = absolute temperature.

Combining the two laws:

\[\frac{p V}{T} = \text{constant} = mR \]

where: \(m \) = mass, \(R \) = the gas constant

specific volume \(v = \frac{V}{m} \) (m\(^3\)kg\(^{-1}\))

so that: \(pv = RT \)

3.2.2 Universal gas constant

If \(R \) is multiplied by \(M \) the molecular weight of the gas, then:

Universal gas constant \(R_o = MR = 8.3143 \) kJ kg\(^{-1}\) K\(^{-1}\) (for all perfect gases)
3.2.3 **Specific heat relationships**

There are two particular values of specific heat: that at constant volume \(c_v \), and that at constant pressure \(c_p \).

Ratio of specific heats \(\gamma = \frac{c_p}{c_v} \)

Also \(c_p - c_v = R \), so that \(c_v = \frac{R}{(\gamma - 1)} \)

3.2.4 **Internal energy**

This is the energy of a gas by virtue of its temperature.

\[u = c_v T \quad \text{(specific internal energy)} \]

\[U = mc_v T \quad \text{(total internal energy)} \]

Change in internal energy:

\[U_2 - U_1 = mc_v (T_2 - T_1) \]

\[u_2 - u_1 = c_v (T_2 - T_1) \]

3.2.5 **Enthalpy**

Enthalpy is the sum of internal energy and pressure energy \(pV \), i.e.

\[h = u + pv \]

\[H = U + pv \]

where: \(h = \text{specific enthalpy} \), \(H = \text{total enthalpy} \)

and it can be shown that \(h = c_v T \).

Change in enthalpy:

\[h_2 - h_1 = (u_2 - u_1) + p(v_2 - v_1) = c_v (T_2 - T_1) \]

\[H_2 - H_1 = mc_v (T_2 - T_1) \]

3.2.6 **Energy equations**

Non-flow energy equation

Gain in internal energy = Heat supplied - Work done

\[u_2 - u_1 = Q - W \]

where: \(W = \int_1^2 p \, dv \).

Steady flow energy equation

This includes kinetic energy and enthalpy:

\[h_2 - h_1 = Q - W - \left(\frac{C_2^2 - C_1^2}{2} \right) \]

or, if the kinetic energy is small (which is usually the case)

\[h_2 - h_1 = Q - W \quad \text{(neglecting height differences)} \]

3.2.7 **Entropy**

Entropy, when plotted versus temperature, gives a curve under which the area is heat. The symbol for entropy is \(s \) and the units are kilojoules per kilogram per kelvin (kJ kg\(^{-1}\) K\(^{-1}\)).

\[s_2 - s_1 = \int_1^2 \frac{dQ}{T} \quad \text{or} \quad Q = \int_1^2 T \, ds \]

3.2.8 **Exergy and anergy**

In a heat engine process from state 1 with surroundings at state 2 exergy is that part of the total enthalpy drop available for work production.
Exergy $\delta_e = (H_1 - H_o) - T_o(S_1 - S_o)$
That part of the total enthalpy not available is called the 'anergy'.
Anergy $\delta = T_o(S_1 - S_o)$

3.2.9 Reversible non-flow processes

Constant volume

In this case:

\[
\frac{p}{T} = \text{constant}
\]

\[
W = 0, \\
Q = c_v(T_2 - T_1)
\]

\[
(s_2 - s_1) = c_v \ln \left(\frac{T_2}{T_1} \right)
\]

Constant pressure

In this case:

\[
\frac{p}{T} = \text{constant}
\]

\[
W = p(v_2 - v_1), \\
Q = c_v(T_2 - T_1) = (h_2 - h_1)
\]

\[
(s_2 - s_1) = c_p \ln \left(\frac{T_2}{T_1} \right)
\]

Constant temperature (isothermal)

In this case:

\[
pv = \text{constant}
\]

\[
W = Q = RT \ln \left(\frac{p_2}{p_1} \right) = RT \ln \left(\frac{v_1}{v_2} \right)
\]

\[
(s_2 - s_1) = R \ln \left(\frac{p_2}{p_1} \right) = R \ln \left(\frac{v_1}{v_2} \right)
\]

Constant entropy (isentropic)

In this case:

\[
pv^\gamma = \text{constant}, \quad \gamma = \frac{c_p}{c_v}
\]

\[
W = \frac{p_1 v_1 - p_2 v_2}{\gamma - 1}
\]

\[
Q = 0, \\
(s_2 - s_1) = 0
\]

Also:

\[
\frac{p_1}{p_2} = \left(\frac{T_1}{T_2} \right)^{\frac{\gamma - 1}{\gamma}}, \\
\frac{v_1}{v_2} = \left(\frac{T_2}{T_1} \right)^{\frac{1}{\gamma - 1}}
\]

Polytropic process

In this case:

\[
pv^n = \text{constant}, \quad n = \text{any index}
\]
3.2.10 Irreversible processes

Throttling (constant enthalpy process)

\[h_1 = h_2, \]

For perfect gas \(T_1 = T_2 \)

Adiabatic mixing

When two flows of a gas \(\dot{m}_1 \) and \(\dot{m}_2 \) at temperatures \(T_1 \) and \(T_2 \) mix:

\[T_3 = \frac{\dot{m}_1 T_1 + \dot{m}_2 T_2}{\dot{m}_1 + \dot{m}_2} \]
3.3 Vapours

A substance may exist as a solid, liquid, vapour or gas. A mixture of liquid (usually in the form of very small drops) and dry vapour is known as a 'wet vapour'. When all the liquid has just been converted to vapour the substance is referred to as 'saturated vapour' or 'dry saturated vapour'. Further heating produces what is known as 'superheated vapour' and the temperature rise (at constant pressure) required to do this is known as the 'degree of superheat'. The method of determining the properties of vapours is given, and is to be used in conjunction with vapour tables, the most comprehensive of which are for water vapour. Processes are shown on the temperature-entropy and enthalpy-entropy diagrams.

Symbols used:

- \(p \) = pressure (\(\text{N m}^{-2} \) (\(\equiv \text{pascal} \)); \(\text{N m}^{-2} \); bar \((\equiv 10^5 \text{N m}^{-2}) \); millibar \((\equiv 100 \text{N m}^{-2}) \))
- \(t \) = temperature (\(^\circ\text{C} \))
- \(t_s \) = saturation temperature (\(^\circ\text{C} \))
- \(T \) = absolute temperature (\(K \equiv ^\circ\text{C} + 273 \))
- \(v \) = specific volume (\(\text{m}^3 \text{kg}^{-1} \))
- \(\nu_l \) = specific volume of liquid (\(\text{m}^3 \text{kg}^{-1} \))
- \(\nu_g \) = specific volume of saturated vapour (\(\text{m}^3 \text{kg}^{-1} \))
- \(\nu_f \) = specific internal energy (\(\text{kJ kg}^{-1} \))
- \(\nu_{l_f} \) = specific internal energy of liquid (\(\text{kJ kg}^{-1} \))
- \(\nu_{l_g} \) = specific internal energy of saturated vapour (\(\text{kJ kg}^{-1} \))
- \(\nu_{l_s} \) = specific internal energy change from liquid to vapour (\(\text{kJ kg}^{-1} \))
- \(\nu_{s_l} \) = specific internal energy of liquid (\(\text{kJ kg}^{-1} \))
- \(\nu_{s_g} \) = specific internal energy of vapour (\(\text{kJ kg}^{-1} \))
- \(\nu_{s_l} \) = specific internal energy change from liquid to vapour (\(\text{kJ kg}^{-1} \))
- \(s \) = specific entropy, \(\text{kJ kg}^{-1} \text{K}^{-1} \)
- \(s_l \) = specific entropy of liquid, \(\text{kJ kg}^{-1} \text{K}^{-1} \)
- \(s_g \) = specific entropy of vapour, \(\text{kJ kg}^{-1} \text{K}^{-1} \)
- \(s_{l_s} \) = specific entropy change from liquid to vapour, \(\text{kJ kg}^{-1} \text{K}^{-1} \)
- \(x \) = dryness fraction

3.3.1 Properties of vapours

Dryness fraction \(x = \frac{\text{Mass of dry vapour}}{\text{Mass of wet vapour}} \)

Specific volume of wet vapour \(\nu_e = \nu_l (1 - x) + x \nu_g \approx x \nu_g \) (since \(\nu_l \) is small)

Specific internal energy of wet vapour \(\nu_s = \nu_f + x (\nu_g - \nu_f) = \nu_f + x \nu_{l_s} \)

Specific enthalpy of wet vapour \(h = h_f + x (h_g - h_f) = h_f + x h_{l_g} \)

Specific entropy of wet vapour \(s = s_f + x (s_g - s_f) = s_f + x s_{l_g} \)

Superheated vapour Tables (e.g. for water) give values of \(v, u, h, s \) for a particular pressure and a range of temperatures above the saturation temperature \(t_s \). For steam above 70 bar use \(u = h - pv \).

3.3.2 Temperature–Entropy diagram (\(T-s \) diagram)

Various processes are shown for a vapour on the \(T-s \) diagram. AB is an isothermal process in which a wet vapour becomes superheated. CD shows an isentropic expansion from the superheat to the wet region. EF is a polytropic process in the superheat region.

3.3.3 Enthalpy of a vapour

The enthalpy is represented by the area under a constant pressure line on the \(T-s \) diagram. Area \(h_f \) is the enthalpy of the liquid at saturation temperature, \(h_{l_g} \) is the enthalpy corresponding to the latent heat,
and \(h_{sp} \) is the superheat. The total enthalpy is, therefore,
\[
h = h_f + h_{ig} + h_{sp}
\]

3.3.4 Dryness fraction

The dryness fraction at entropy \(s \) is
\[
x = \left(\frac{s - s_f}{s_{ig}} \right) \quad \text{and} \quad h = h_f + x h_{ig}
\]

The area \(x h_{ig} \) is shown.

3.3.5 Enthalpy–entropy (h–s) diagram

Lines of constant pressure, temperature, dryness fraction and specific volume are shown on the diagram. AB represents an isentropic process, AC a polytropic process and DE a constant enthalpy process.

3.4 Data tables

3.4.1 Temperature conversion

Conversion formulae:
\[
^\circ C = \frac{^\circ F - 32}{1.8} \\
^\circ F = (^\circ C \times 1.8) + 32
\]
Latent heats and boiling points

Latent heat of evaporation (kJ kg\(^{-1}\)) at atmospheric pressure

<table>
<thead>
<tr>
<th>Liquid</th>
<th>(h_{fs})</th>
<th>Liquid</th>
<th>(h_{fs})</th>
<th>Liquid</th>
<th>(h_{fs})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>1230</td>
<td>Ethanol (ethyl alcohol)</td>
<td>863</td>
<td>Sulphur dioxide</td>
<td>381</td>
</tr>
<tr>
<td>Bisulphide of carbon</td>
<td>372</td>
<td>Ether</td>
<td>379</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methanol (methyl or wood alcohol)</td>
<td>1119</td>
<td>Turpentine</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>2248</td>
</tr>
</tbody>
</table>

Latent heat of fusion (kJ kg\(^{-1}\)) at atmospheric pressure

<table>
<thead>
<tr>
<th>Substance</th>
<th>(h_{sf})</th>
<th>Substance</th>
<th>(h_{sf})</th>
<th>Substance</th>
<th>(h_{sf})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>387</td>
<td>Paraffin (kerosene)</td>
<td>147.2</td>
<td>Sulphur</td>
<td>39.2</td>
</tr>
<tr>
<td>Bismuth</td>
<td>52.9</td>
<td>Phosphorus</td>
<td>21.1</td>
<td>Tin</td>
<td>59.7</td>
</tr>
<tr>
<td>Cast iron, grey</td>
<td>96.3</td>
<td>Lead</td>
<td>23.3</td>
<td>Zinc</td>
<td>117.8</td>
</tr>
<tr>
<td>Cast iron, white</td>
<td>138.2</td>
<td>Silver</td>
<td>88.2</td>
<td>Ice</td>
<td>334.9</td>
</tr>
<tr>
<td>Copper</td>
<td>180</td>
<td>Nickel</td>
<td>309</td>
<td>Magnesium</td>
<td>372</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>°C</th>
<th>°F</th>
<th>°C</th>
<th>°F</th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>32</td>
<td>160</td>
<td>320</td>
<td>350</td>
<td>662</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>170</td>
<td>338</td>
<td>400</td>
<td>752</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
<td>180</td>
<td>356</td>
<td>450</td>
<td>842</td>
</tr>
<tr>
<td>30</td>
<td>86</td>
<td>190</td>
<td>374</td>
<td>500</td>
<td>932</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
<td>200</td>
<td>392</td>
<td>550</td>
<td>1022</td>
</tr>
<tr>
<td>50</td>
<td>122</td>
<td>210</td>
<td>410</td>
<td>600</td>
<td>1112</td>
</tr>
<tr>
<td>60</td>
<td>140</td>
<td>220</td>
<td>428</td>
<td>650</td>
<td>1202</td>
</tr>
<tr>
<td>70</td>
<td>158</td>
<td>230</td>
<td>446</td>
<td>700</td>
<td>1292</td>
</tr>
<tr>
<td>80</td>
<td>176</td>
<td>240</td>
<td>464</td>
<td>750</td>
<td>1382</td>
</tr>
<tr>
<td>90</td>
<td>194</td>
<td>250</td>
<td>482</td>
<td>800</td>
<td>1472</td>
</tr>
<tr>
<td>100</td>
<td>212</td>
<td>260</td>
<td>500</td>
<td>850</td>
<td>1562</td>
</tr>
<tr>
<td>110</td>
<td>230</td>
<td>270</td>
<td>518</td>
<td>900</td>
<td>1652</td>
</tr>
<tr>
<td>120</td>
<td>248</td>
<td>280</td>
<td>536</td>
<td>950</td>
<td>1742</td>
</tr>
<tr>
<td>130</td>
<td>266</td>
<td>290</td>
<td>554</td>
<td>1000</td>
<td>1832</td>
</tr>
<tr>
<td>140</td>
<td>284</td>
<td>300</td>
<td>572</td>
<td>1050</td>
<td>1922</td>
</tr>
<tr>
<td>150</td>
<td>302</td>
<td>310</td>
<td>590</td>
<td>1100</td>
<td>2012</td>
</tr>
</tbody>
</table>
Boiling point (°C) at atmospheric pressure

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>-33</td>
<td>Methanol (methyl alcohol or</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wood alcohol)</td>
<td></td>
</tr>
<tr>
<td>Benzine</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromine</td>
<td>63</td>
<td>Napthalene</td>
<td>220</td>
</tr>
<tr>
<td>Butane</td>
<td>1</td>
<td>Nitric acid</td>
<td>120</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>-78.5 (sublimates)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol (ethyl alcohol)</td>
<td>78</td>
<td>Oxygen</td>
<td>-183</td>
</tr>
<tr>
<td>Ether</td>
<td>38</td>
<td>Petrol</td>
<td>200</td>
</tr>
<tr>
<td>Freon 12</td>
<td>-30</td>
<td>Propane</td>
<td>-45</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>-252.7</td>
<td></td>
<td>108</td>
</tr>
<tr>
<td>Kerosine (paraffin)</td>
<td>150–300</td>
<td></td>
<td>310</td>
</tr>
<tr>
<td>Mercury</td>
<td>358</td>
<td>Water</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water, sea</td>
<td>100.7 (average)</td>
</tr>
</tbody>
</table>

3.4.3 Properties of air

Analysis of air

<table>
<thead>
<tr>
<th>Gas</th>
<th>Symbol</th>
<th>Molecular weight</th>
<th>% volume</th>
<th>% mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>O₂</td>
<td>31.999</td>
<td>20.95</td>
<td>23.14</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>N₂</td>
<td>28.013</td>
<td>78.09</td>
<td>75.53</td>
</tr>
<tr>
<td>Argon</td>
<td>Ar</td>
<td>39.948</td>
<td>0.930</td>
<td>1.28</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>CO₂</td>
<td>44.010</td>
<td>0.030</td>
<td>0.050</td>
</tr>
</tbody>
</table>

Approximate analysis of air (suitable for calculations)

<table>
<thead>
<tr>
<th>Gas</th>
<th>Molecular weight</th>
<th>% volume</th>
<th>% mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>32</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>28</td>
<td>79</td>
<td>77</td>
</tr>
</tbody>
</table>

General properties of air (at 300 K, 1 bar)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean molecular weight</td>
<td>$M = 28.96$</td>
</tr>
<tr>
<td>Specific heat at constant pressure</td>
<td>$c_p = 1.005 \text{kJ kg}^{-1}$</td>
</tr>
<tr>
<td>Specific heat at constant volume</td>
<td>$c_v = 0.718 \text{kJ kg}^{-1} \text{K}^{-1}$</td>
</tr>
<tr>
<td>Ratio of specific heats</td>
<td>$\gamma = 1.40$</td>
</tr>
<tr>
<td>Gas constant</td>
<td>$R = 0.2871 \text{kJ kg}^{-1} \text{K}^{-1}$</td>
</tr>
<tr>
<td>Density</td>
<td>$\rho = 1.183 \text{kg m}^{-3}$</td>
</tr>
<tr>
<td>Dynamic viscosity</td>
<td>$\mu = 1.853 \times 10^{-5} \text{Ns m}^{-2}$</td>
</tr>
<tr>
<td>Kinematic viscosity</td>
<td>$\nu = 1.566 \times 10^{-5} \text{m}^{2} \text{s}^{-1}$</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>$k = 0.02614 \text{W m}^{-1} \text{K}^{-1}$</td>
</tr>
<tr>
<td>Thermal diffusivity</td>
<td>$\alpha = 2203 \text{m}^{2} \text{s}^{-1}$</td>
</tr>
<tr>
<td>Prandtl number</td>
<td>$Pr = 0.711$</td>
</tr>
</tbody>
</table>
3.4.4 Specific heat capacities

Specific heat capacity of solids and liquids (kJ kg\(^{-1}\) K\(^{-1}\))

<table>
<thead>
<tr>
<th>Material</th>
<th>Specific heat capacity (kJ kg(^{-1}) K(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>0.897</td>
</tr>
<tr>
<td>Aluminium bronze</td>
<td>0.897</td>
</tr>
<tr>
<td>Brass</td>
<td>0.377</td>
</tr>
<tr>
<td>Bronze</td>
<td>0.343</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.235</td>
</tr>
<tr>
<td>Constantan</td>
<td>0.410</td>
</tr>
<tr>
<td>Copper</td>
<td>0.384</td>
</tr>
<tr>
<td>Ethanol</td>
<td>2.940</td>
</tr>
<tr>
<td>(ethyl alcohol)</td>
<td></td>
</tr>
<tr>
<td>Glass: crown</td>
<td>0.670</td>
</tr>
<tr>
<td>flint</td>
<td>0.503</td>
</tr>
<tr>
<td>Pyrex</td>
<td>0.753</td>
</tr>
<tr>
<td>Gold</td>
<td>0.129</td>
</tr>
<tr>
<td>Graphite</td>
<td>0.838</td>
</tr>
<tr>
<td>Ice</td>
<td>2.100</td>
</tr>
<tr>
<td>Iron: cast</td>
<td>0.420</td>
</tr>
<tr>
<td>pure</td>
<td>0.447</td>
</tr>
<tr>
<td>Kerosene</td>
<td>2.100</td>
</tr>
<tr>
<td>Lead</td>
<td>0.130</td>
</tr>
<tr>
<td>Magnesia</td>
<td>0.930</td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.030</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.138</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.272</td>
</tr>
<tr>
<td>Nickel</td>
<td>0.457</td>
</tr>
<tr>
<td>Oil, machine</td>
<td>1.676</td>
</tr>
<tr>
<td>Paraffin</td>
<td>2.100</td>
</tr>
<tr>
<td>Paraffin wax</td>
<td>2.140</td>
</tr>
<tr>
<td>Petroleum</td>
<td>2.140</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.796</td>
</tr>
<tr>
<td>Platinum</td>
<td>0.133</td>
</tr>
<tr>
<td>Rubber</td>
<td>2.010</td>
</tr>
<tr>
<td>Salt, common</td>
<td>0.880</td>
</tr>
<tr>
<td>Sand</td>
<td>0.796</td>
</tr>
<tr>
<td>Seawater</td>
<td>3.940</td>
</tr>
<tr>
<td>Silica</td>
<td>0.800</td>
</tr>
<tr>
<td>Silicon</td>
<td>0.737</td>
</tr>
<tr>
<td>Silver</td>
<td>0.236</td>
</tr>
<tr>
<td>Tin</td>
<td>0.220</td>
</tr>
<tr>
<td>Titanium</td>
<td>0.523</td>
</tr>
<tr>
<td>Tungsten</td>
<td>0.142</td>
</tr>
<tr>
<td>Turpentine</td>
<td>1.760</td>
</tr>
<tr>
<td>Uranium</td>
<td>0.116</td>
</tr>
<tr>
<td>Vanadium</td>
<td>0.482</td>
</tr>
<tr>
<td>Water</td>
<td>4.196</td>
</tr>
<tr>
<td>Water, heavy</td>
<td>4.221</td>
</tr>
<tr>
<td>Wood (typical)</td>
<td>3.0</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.388</td>
</tr>
</tbody>
</table>

Specific heat capacity of gases, gas constant and molecular weight (at normal pressure and temperature)

<table>
<thead>
<tr>
<th>Gas</th>
<th>Specific heats (c_p)</th>
<th>Specific heats (c_v)</th>
<th>(\gamma = \frac{c_p}{c_v})</th>
<th>Gas constant, (R) (kJ kg(^{-1}) K(^{-1}))</th>
<th>Molecular weight, (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1.005</td>
<td>0.718</td>
<td>1.4</td>
<td>0.2871</td>
<td>28.96</td>
</tr>
<tr>
<td>Ammonia</td>
<td>2.191</td>
<td>1.663</td>
<td>1.32</td>
<td>0.528</td>
<td>15.75</td>
</tr>
<tr>
<td>Argon</td>
<td>0.5234</td>
<td>0.3136</td>
<td>1.668</td>
<td>0.2081</td>
<td>40</td>
</tr>
<tr>
<td>Butane</td>
<td>1.68</td>
<td>1.51</td>
<td>1.11</td>
<td>0.17</td>
<td>58</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>0.8457</td>
<td>0.6573</td>
<td>1.29</td>
<td>0.1889</td>
<td>44</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>1.041</td>
<td>0.7449</td>
<td>1.398</td>
<td>0.2968</td>
<td>28</td>
</tr>
<tr>
<td>Chlorine</td>
<td>0.511</td>
<td>0.383</td>
<td>1.33</td>
<td>0.128</td>
<td>65</td>
</tr>
<tr>
<td>Ethane</td>
<td>1.7668</td>
<td>1.4947</td>
<td>1.18</td>
<td>0.2765</td>
<td>30</td>
</tr>
<tr>
<td>Helium</td>
<td>5.234</td>
<td>3.1568</td>
<td>1.659</td>
<td>2.077</td>
<td>4</td>
</tr>
<tr>
<td>Hydrogen chloride</td>
<td>0.813</td>
<td>0.583</td>
<td>1.40</td>
<td>0.230</td>
<td>36.15</td>
</tr>
<tr>
<td>Methane</td>
<td>2.2316</td>
<td>1.7124</td>
<td>1.30</td>
<td>0.5183</td>
<td>16</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1.040</td>
<td>0.7436</td>
<td>1.40</td>
<td>0.2968</td>
<td>28</td>
</tr>
<tr>
<td>Nitrous oxide</td>
<td>0.928</td>
<td>0.708</td>
<td>1.31</td>
<td>0.220</td>
<td>37.8</td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.9182</td>
<td>0.6586</td>
<td>1.394</td>
<td>0.2598</td>
<td>32</td>
</tr>
<tr>
<td>Propane</td>
<td>1.6915</td>
<td>1.507</td>
<td>1.12</td>
<td>0.1886</td>
<td>44</td>
</tr>
<tr>
<td>Sulphur dioxide</td>
<td>0.6448</td>
<td>0.5150</td>
<td>1.25</td>
<td>0.1298</td>
<td>64</td>
</tr>
</tbody>
</table>
3.5 Flow through nozzles

Nozzles are used in steam and gas turbines, in rocket motors, in jet engines and in many other applications. Two types of nozzle are considered: the 'convergent nozzle', where the flow is subsonic; and the 'convergent divergent nozzle', for supersonic flow.

Symbols used:
- $p_1 =$ inlet pressure
- $p_2 =$ outlet pressure
- $p_c =$ critical pressure at throat
- $v_1 =$ inlet specific volume
- $v_2 =$ outlet specific volume
- $C_2 =$ outlet velocity
- $C_c =$ throat velocity
- $r =$ pressure ratio $= \frac{p_2}{p_1}$
- $r_c =$ critical pressure ratio $= \frac{p_c}{p_1}$
- $A_2 =$ outlet area
- $A_c =$ throat area
- $n =$ index of expansion
- $m =$ mass flow rate

Critical pressure ratio $r_c = \left(\frac{2}{n+1}\right)^{\frac{n}{n-1}}$

3.5.1 Convergent nozzle

Outlet pressure p_2 greater than p_c, i.e. $r > r_c$

Outlet velocity $C_2 = \sqrt{\frac{2n}{(n-1)p_1v_1\left(1-r\frac{n-1}{n}\right)}}$

Outlet area $A_2 = \frac{\dot{m}v_1}{C_2(r)^n}$

Outlet pressure p_2 equal to or less than p_c, i.e. $r \leq r_c$

Outlet velocity $C_2 = \sqrt{\frac{2n}{(n+1)p_1v_1}}$

Outlet area $A_2 = \frac{\dot{m}v_1}{C_2(r)^n}$

Note that C_2 is independent of p_2 and that the nozzle flow is a maximum. In this case the nozzle is said to be 'choked'.

3.5.2 Convergent-divergent nozzle

In this case:

Throat velocity $C_c = \sqrt{\frac{2n}{n+1}p_1v_1}$

Throat area $A_c = \frac{\dot{m}v_1}{C_c(r_c)^n}$, $r_c = \left(\frac{2}{n+1}\right)^{\frac{n}{n-1}}$

Outlet velocity $C_2 = \sqrt{\frac{2n}{(n-1)p_1v_1\left(1-r\frac{n-1}{n}\right)}}$

Outlet area $A_2 = \frac{\dot{m}v_1}{C_2(r)^n}$

Values of the index n and the critical pressure ratio r_c for different fluids are given in the table.
3.6 Steam plant

The simplest steam cycle of practical value is the Rankine cycle with dry saturated steam supplied by a boiler to a power unit, e.g. a turbine, which exhausts to a condenser where the condensed steam is pumped back into the boiler. Formulae are given for work output, heat supplied, efficiency and specific steam consumption. Higher efficiency is obtained if the steam is initially superheated which also reduces specific steam consumption and means smaller plant can be used. If the steam is 'reheated' and passed through a second turbine the final dryness fraction is increased with beneficial effects (e.g. reduced erosion of turbine blades due to water droplets); in addition, there is a further reduction in specific steam consumption.

In the 'regenerative cycle' efficiency is improved by bleeding off a proportion of the steam at an intermediate pressure and mixing it with feed water pumped to the same pressure in a 'feed heater'. Several feed heaters may be used but these are of the 'closed' variety to avoid the necessity for expensive pumps.

3.6.1 Rankine cycle — dry saturated steam at turbine inlet

From the T-s diagram:

\[s_2 = s_1, \quad x_2 = \frac{(s_2 - s_{12})}{s_{12}} \]

\[h_2 = h_{f2} + x_2 h_{fg2} \]

Work output \(W = (h_1 - h_2) \)

Heat supplied \(Q = (h_1 - h_{f3}) \)

Cycle efficiency \(\eta = W/Q \) (neglecting pump work)

Specific steam consumption

\[\text{SSC} = \frac{3600}{W} \text{ kg kW}^{-1}\text{h}^{-1} \]

Note: if the turbine isentropic efficiency \(\eta_i \) is allowed for: \(W = (h_1 - h_2) \eta_i \) and expansion is to point 2' on the diagram.

3.6.2 Rankine cycle — with superheat

The method is the same as for dry saturated steam. The graph shows the effect of superheat temperature on efficiency and specific steam consumption. In this case \(h_1 \) is the enthalpy for superheated steam.
3.6.3 Rankine cycle with reheat

At point 2 the steam is reheated to point 6 and passed through a second turbine.

W = (h₁ - h₂) + (h₆ - h₇)
Q = (h₃ - h₁) + (h₆ - h₂)

The value of \(p₆ \) is found using \(T₆ = T₁ \) (usually) and \(s_{₆g} = s₁ \) from which \(h₆ \) is found. The value of \(h₁ \) is found using \(s₁ = s₈ \).

A bleed pressure \(p_b \) is selected to correspond to the saturation temperature \(t_b \).

Dryness fractions: \(x_b = \frac{s₃ - s_{₁b}}{s_{₁b} - s_{₁a}} \); \(x₂ = \frac{s₁ - s₄}{s₄ - s₃} \)

Enthalpy: \(h_b = h_{₁b} + x_b h_{₁gb} \); \(h₂ = h₂ + x₂ h₂g₂ \)

Quantity of bled steam \(y = \frac{h_{₁b} - h₁}{h_b - h₂} \) kg/kg total steam

Work done per kg steam \(W = (h₁ - h₆) + (1 - y)(h₆ - h₂) \)

Heat supplied per kg steam \(Q = (h₁ - h₁b) \)

Cycle efficiency \(\eta = \frac{W}{Q} \)

Specific steam consumption (SSC) = \(\frac{3600}{W} \) kg kW⁻¹h⁻¹

3.6.4 Regenerative cycle

Turbine inlet conditions \(p₁, t₁, h₁ \)
Turbine outlet conditions \(p₂, t₂, h₂ \)
Bleed steam conditions \(p₇, t₇, h₇ \)

For maximum efficiency \(t₇ = \frac{(t₁ + t₄)}{2} \)
3.7 Steam turbines

This section deals with the two main types of steam turbine, the 'impulse turbine' and the 'impulse-reaction turbine'. The theory is given for a single-stage impulse turbine and velocity compounded impulse turbine.

In the impulse-reaction turbine the fixed and moving blades are of similar form, consisting of converging passages to give a pressure drop in each case. In the case of 50% reaction (Parson's turbine) the enthalpy drop is the same for both fixed and moving blades.

Stage efficiency, overall efficiency and the reheat factor are defined.

3.7.1 Impulse turbine

Single-stage impulse turbine

Symbols used:
- C = nozzle velocity
- C_b = blade velocity
- C_a = axial velocity
- ρ = ratio of blade to nozzle velocity
- β_1 = blade inlet angle
- β_2 = blade outlet angle (in this case $\beta_1 = \beta_2$)
- α = nozzle angle
- m = mass flow rate of steam
- k = blade friction coefficient
- P = stage power
- η = stage diagram efficiency
- T_a = axial thrust on blades
- R_m = mean radius of nozzle arc
- v = specific volume of steam at nozzle outlet
- θ = nozzle arc angle (degrees)
- N = speed of rotation
- h = nozzle height
- A = nozzle area

\[
\text{Power } P = m C^2 \rho (\cos \alpha - \rho) (1 + k)
\]

where: $\rho = \frac{C_b}{C}$ and $C_b = 2\pi R_m N$

Efficiency $\eta = 2\rho (\cos \alpha - \rho) (1 + k)$

Maximum efficiency $\eta_{\text{max}} = (1 + k) \cos^2 \frac{\alpha}{2} \left(\text{at } \rho = \cos \alpha \frac{(1 + k)}{2} \right)$

Axial thrust $T_a = m C (1 - k) \sin \alpha$

Mass flow rate $m = \frac{C_s A}{v}$

Nozzle area $A = \frac{\pi R_m \theta h}{180}$

Pressure compounded impulse turbine

The steam pressure is broken down in two or more stages. Each stage may be analysed in the same manner as described above.
Velocity compounded impulse turbine

One row of nozzles is followed by two or more rows of moving blades with intervening rows of fixed blades of the same type which alter the direction of flow.

Two-row wheel Assume $\beta_1 = \beta_2$, $k = 1$ and that all blades are symmetrical.

Maximum efficiency $\eta_{\text{max}} = \cos^2 \alpha$ (at $\rho = \cos \alpha \frac{\cos \alpha}{4}$) in which case the steam leaves the last row axially.

3.7.2 Impulse-reaction turbine

In this case there is 'full admission', i.e. $\theta = 360^\circ$. Both nozzles and moving blades are similar in shape and have approximately the same enthalpy drop. Referring to the figure:

Enthalpy drop $= (h_2 - h_1)$ (for the fixed blades)

$= (h_1 - h_2)$ (for the moving blades)

Mass flow rate $m = \frac{C_s A}{v}$

Area of flow $A = 2\pi R_m h$

Degree of reaction $R = \frac{(h_1 - h_2)}{(h_0 - h_1) + (h_1 - h_2)} = \frac{h_1 - h_2}{h_0 - h_2}$

50% reaction (Parson's) turbine

In this case the velocity diagram is symmetrical.

Mass flow rate $m = \frac{2\pi R_m h C \sin \alpha}{v}$

where: $\alpha = \text{blade outlet angle}$.

Enthalpy drop per stage $\Delta h_s = C^2 \rho (2 \cos \alpha - \rho)$

where: $\rho = \frac{C_b}{C}$ and $C_b = 2\pi R_m N$.

Stage power $P_s = m \Delta h_s$

Stage efficiency $\eta_s = \frac{2\rho (2 \cos \alpha - \rho)}{1 + \rho (2 \cos \alpha - \rho)}$

Maximum efficiency $\eta_{\text{max}} = \frac{2 \cos^2 \alpha}{(1 + \cos^2 \alpha)}$ (when $\rho = \cos \alpha$)
3.7.3 Reheat factor and overall efficiency

Referring to the 'condition curve' on the h–s diagram:

\[\Delta h_A = \text{available stage enthalpy drop} \]
\[\Delta h_i = \text{isentropic stage enthalpy drop} \]
\[\Delta h_{OA} = \text{available overall enthalpy drop} \]
\[\Delta h_{0i} = \text{isentropic overall enthalpy drop} \]

Stage efficiency \(\eta_s = \frac{\Delta h_A}{\Delta h_i} \)

Overall efficiency \(\eta_o = \frac{\Delta h_{OA}}{\Delta h_{0i}} \)

Reheat factor \(RF = \frac{\eta_o}{\eta_s} \)

3.8 Gas turbines

The gas turbine unit operates basically on the constant-pressure cycle, particularly in the case of the 'closed cycle'. In the 'open cycle' air is drawn in from the atmosphere, compressed and supplied to a combustion chamber where fuel is burnt with a large amount of 'excess air'. The hot gases drive a turbine which drives the compressor and also provides useful work. The efficiency increases with compression ratio.

The output power increases with both compression ratio and turbine inlet temperature.

The effect of losses and variation in fluid properties is shown on the basic cycle. The efficiency of the basic cycle can be greatly increased by incorporating a heat exchanger between the compressor outlet and the combustion chamber inlet. It uses the exhaust gases from the turbine to preheat the incoming air.
3.8.1 Simple cycle

Compression ratio \(r = \frac{P_2}{P_1} = \frac{P_3}{P_4} \)

Let: \(c = r^{-\frac{1}{\gamma}} = \frac{T_2}{T_1} = \frac{T_3}{T_4} \) and \(t = \frac{T_3}{T_1} \)

\(c \) = specific heat for turbine
\(c_{cc} \) = specific heat for combustion chamber
\(\gamma_c \) = ratio of specific heats for compressor
\(\gamma_t \) = ratio of specific heats for turbine
\(q_c \) = isentropic compressor efficiency
\(q_l \) = isentropic turbine efficiency

Heat supplied \(Q = c_p T_1 (t - c) \) per kg of air

Work done = Turbine work out - Compressor work in

\[W = c_p T_1 \left[t \left(1 - \frac{1}{c} \right) - (c - 1) \right] \]

Efficiency \(\eta = 1 - \frac{1}{c} \)

Simple cycle with isentropic efficiencies and variable specific heats

Let:
\(c_{cp} = \) specific heat for compressor
\(c_{ct} = \) specific heat for turbine
\(c_{cc} = \) specific heat for combustion chamber
\(\gamma_c = \) ratio of specific heats for compressor
\(\gamma_t = \) ratio of specific heats for turbine
\(\eta_c = \) isentropic compressor efficiency
\(\eta_t = \) isentropic turbine efficiency

Heat supplied \(Q = c_{cc} \left[T_3 - T_1 - \frac{(T_2 - T_1)}{\eta_c} \right] \) per kg of air

Work done = Turbine work out - Compressor work in.

\[W = c_{ct} \left(T_3 - T_4 \right) \eta_t - c_{ct} \left(\frac{T_2 - T_1}{\eta_t} \right) \frac{W}{Q} \]

Work ratio = \[\frac{\text{Net work out}}{\text{Gross work}} = \frac{W}{c_{ct} \left(T_3 - T_4 \right) \eta_t} \]

Efficiency \(\eta = \frac{W}{Q} \)

Note: \(r = \frac{P_2}{P_1} ; \frac{T_2}{T_1} = r^{(\frac{\gamma - 1}{\gamma})} ; \frac{T_3}{T_4} = r^{(\frac{\gamma - 1}{\gamma})} \)
3.8.2 **Simple cycle with heat exchanger**

Heat supplied \(Q = c_p T_1 t \left(1 - \frac{1}{c} \right) \)

Work done \(W = c_p T_1 \left[t \left(1 - \frac{1}{c} \right) - (c - 1) \right] \)

Efficiency \(\eta = 1 - \frac{c}{t} \)

\[\begin{array}{l}
1 & 2 & 3 & 4 & 5 \\
C & \text{compressor} & HE & \text{heat exchanger} & W \\
T & \text{turbine} & CC & \text{combustion} & T \\
\end{array}\]

3.9 **Heat engine cycles**

3.9.1 **Carnot cycle**

The ideal gas cycle is the Carnot cycle and, in practice, only about half of the Carnot cycle efficiency is realized between the same temperature limits.

Efficiency \(\eta = 1 - \frac{T_2}{T_1} \)

\[s_1 - s_2 = R \ln \frac{p_1}{p_2} - c_p \ln \frac{T_1}{T_2} \]
Work done (per kg) \(W = (T_1 - T_2)(s_1 - s_4) \)

Heat supplied (per kg) \(Q = T_1(s_1 - s_4) \)

Work ratio \(\frac{W}{W_{\text{gross}}} = \frac{(s_1 - s_4)(T_1 - T_2)}{T_1(s_1 - s_4) + c_v(T_1 - T_2)} \)

3.9.2 Constant pressure cycle

In this cycle, heat is supplied and rejected at constant pressure; expansion and compression are assumed to take place at constant entropy. The cycle was once known as the Joule or Brayton cycle and used for hot-air engines. It is now the ideal cycle for the closed gas turbine unit.

![Diagram](https://via.placeholder.com/150)

Efficiency \(\eta = 1 - \frac{1}{r^{\frac{1}{r-1}}} \)

where: \(r = \frac{v_1}{v_2} \) and \(\frac{T_2}{T_1} = \frac{T_3}{T_4} = r^{r-1} \)

\(W = c_v(T_3 - T_2 - T_4 + T_1) \)

\(Q = c_v(T_3 - T_2) \)

3.9.3 Otto cycle (constant-volume cycle)

This is the basic cycle for the petrol engine, the gas engine and the high-speed oil engine. Heat is supplied and rejected at constant volume, and expansion and compression take place isentropically. The thermal efficiency depends only on the compression ratio.

Efficiency \(\eta = 1 - \frac{1}{r^{\frac{1}{r-1}}} \)

where: \(r = \frac{v_1}{v_2} \) and \(\frac{T_2}{T_1} = \frac{T_3}{T_4} = r^{r-1} \)

\(W = c_v(T_3 - T_2 - T_4 + T_1) \)

\(Q = c_v(T_3 - T_2) \)

![Diagram](https://via.placeholder.com/150)

3.9.4 Diesel cycle (constant-pressure combustion)

Although this is called the 'diesel cycle', practical diesel engines do not follow it very closely. In this case heat is added at constant pressure; otherwise the cycle is the same as the Otto cycle.

![Diagram](https://via.placeholder.com/150)
Efficiency \(\eta = 1 - \frac{(\beta^r - 1)}{(\beta - 1)yr^r - 1} \)

where: \(r = \frac{v_1}{v_2} \) and \(\beta = \frac{v_3}{v_2} \) ("cut-off" ratio)

\(W = c_p(T_3 - T_2) - c_v(T_4 - T_1) \)

\(Q = c_p(T_3 - T_2) \)

3.9.5 Dual combustion cycle

Modern diesel engines follow a similar cycle to this ideal one. In this case combustion takes place partly at constant volume and partly at constant pressure.

Efficiency \(\eta = 1 - \frac{(k\beta^r - 1)}{[(k-1)+((\beta-1)yr)^r - 1]} \)

where: \(r = \frac{v_1}{v_2} \), \(k = \frac{p_3}{p_2} \) and \(\beta = \frac{v_4}{v_3} \)

\(W = c_v(T_3 - T_2) + c_p(T_4 - T_3) - c_v(T_5 - T_1) \)

\(Q = c_v(T_3 - T_2) + c_p(T_4 - T_3) \)

3.9.6 Practical engine cycles

In actual engines the working substance is air only in the induction and compression strokes. During expansion and exhaust the working substance consists of the products of combustion with different properties to air. In addition, the wide variations in temperature and pressure result in variation in the thermal properties. Another factor is 'dissociation' which results in a lower maximum temperature than is assumed in elementary treatment of the combustion process.

3.10 Reciprocating spark ignition internal combustion engines

3.10.1 Four-stroke engine

The charge of air and fuel is induced into the engine cylinder as the piston moves from top dead centre (TDC) to bottom dead centre (BDC). The charge is then compressed and ignited by the sparking plug before TDC producing high pressure and temperature at about TDC. The gas expands and work is produced as the piston moves to BDC. A little before BDC the exhaust valve opens and the gases exhaust. The process is completed during the next stroke. A typical 'timing diagram' (section 3.10.3) and the \(p-v \) diagram are shown. Formulae are given for power, mean effective pressure, efficiency and specific fuel consumption.

Pressure–volume (\(p-v \)) diagram:

- \(A \) = area of power loop
- \(B \) = area of pumping loop
- \(L_d \) = length of diagram
- \(K \) = indicator constant

Indicated mean effective pressure

\[p_i = (A - B) \frac{K}{L_d} \text{ (N mm}^{-2}) \]

Indicated power \(P_i = P_i A_p L N \frac{n}{2} \text{ (watts)} \)
where: \(N \) = number of revolutions per second,
\(n \) = number of cylinders, \(A_p \) = piston area (m\(^2\)),
\(L \) = stroke (m).

Torque \(T = FR \) (Nm)

where: \(F \) = force on brake arm (N), \(R \) = brake radius (m).

Brake power \(P_b = 2\pi NT \) (watts)

Friction power \(P_f = P_i - P_b \)

Mechanical efficiency \(\eta_m = \frac{P_b}{P_i} \)

Brake mean effective pressure (BMEP) \(\rho_b = \frac{4\pi T}{ALn} \)

= constant \(\times T \) (N m\(^{-2}\))

Brake thermal efficiency \(\eta_b = \frac{P_b}{\dot{m}LCV} \)

where: \(\dot{m} \) = mass flow rate of fuel (kg s\(^{-1}\)), \(LCV \) = lower calorific value of fuel (J kg\(^{-1}\)).

Specific fuel consumption \(SFC = \frac{\dot{m}}{P_b} \) (kg s\(^{-1}\) W\(^{-1}\))

Volumetric efficiency \(\eta_v = \frac{\text{Volume of induced air at NTP}}{\text{Swept volume of cylinder}} \)

where: \(\text{NTP} = \text{normal temperature and pressure.} \)

3.10.2 Two-stroke engine

In an engine with crankcase compression, the piston draws a new charge into the crankcase through a spring-loaded valve during the compression stroke. Ignition occurs just before TDC after which the working stroke commences. Near the end of the stroke the exhaust port is uncovered and the next charge enters the cylinder. The exhaust port closes shortly after the transfer port, and compression begins. The piston is shaped to minimize mixing of the new charge with the exhaust. (See section 3.10.3)

Pressure–volume (p–v) diagram:

\(A = \text{area of power loop} \)

\(B = \text{area of pumping loop} \)

Indicated mean effective pressure (IMEP): \(P_i = (A - B) \frac{K}{L_d} \)
where: \(K \) = indicator constant.

Indicated power \(P_i = p_iA_pLNn \)

Brake mean effective pressure (BMEP) \(p_b = \frac{2\pi T}{ALn} \)

Other quantities are as for the four-stroke engine.

Compression-ignition engines

Both four-stroke and two-stroke engines may have compression ignition instead of spark ignition. The air is compressed to a high pressure and temperature and the fuel injected. The high air temperature causes combustion.

Two-stroke engine

\[I = \text{inlet angle (approx. 80°)} \]
\[E = \text{exhaust angle (approx. 120°)} \]
\[T = \text{transfer angle (approx. 100°)} \]

3.10.3 Timing diagrams

Four-stroke engine

\[\text{IO} = \text{inlet valve opens} \]
\[\text{IC} = \text{inlet valve closes} \]
\[S = \text{spark occurs} \]
\[\text{EO} = \text{exhaust valve opens} \]
\[\text{EC} = \text{exhaust valve closes} \]

3.10.4 Performance curves for internal combustion engines

Typical curves are shown for mechanical efficiency versus brake power, BMEP versus torque, and volumetric efficiency versus speed. The effect of mixture strength on the \(p-v \) and \(p-\theta \) diagrams is shown and curves of power and MEP against speed are given. The curve of specific fuel consumption versus brake power, known as the 'consumption loop' shows the effect of mixture strength on fuel consumption.
Mechanical efficiency vs brake power

Effect of mixture strength on $p-\theta$ diagram

BMEP vs torque

Power, MEP, mechanical efficiency vs speed

Volumetric efficiency vs speed

Effect of mixture strength on $p-v$ diagram

Specific fuel consumption, SFC

Brake power, P_b
3.11 Air compressors

The following deals with positive-displacement-type compressors as opposed to rotodynamic types. The reciprocating compressor is the most suitable for high pressures and the Roots blower and vane compressor are most suitable for low pressures.

3.11.1 Reciprocating compressor

This consists of one or more cylinders with cranks, connecting rods and pistons. The inlet and outlet valves are of the automatic spring-loaded type. Large cylinders may be water cooled, but small ones are usually finned.

Air is drawn into the cylinder at slightly below atmospheric pressure, compressed to the required discharge pressure during part of the stroke, and finally discharged at outlet pressure. A small clearance volume is necessary. The cylinders may be single or double acting.

Symbols used:

- \(p \) = free air pressure (atmospheric conditions)
- \(p_1 \) = inlet pressure
- \(p_2 \) = discharge pressure
- \(r \) = pressure ratio \(= \frac{p_2}{p_1} \)
- \(T \) = free air temperature
- \(T_1 \) = inlet air temperature
- \(T_2 \) = discharge temperature
- \(V_s \) = swept volume
- \(V_c \) = clearance volume
- \(V_i \) = induced volume
- \(R \) = gas constant for air
- \(n \) = index of expansion and compression
- \(\gamma \) = ratio of specific heats for air
- \(\dot{m} \) = air mass flow rate
- \(Q \) = free air volume flow rate
- \(N \) = number of revolutions per second
- \(Z \) = number of effective strokes per revolution
 \((=1 \) for single acting; \(2 \) for double acting)
- \(\eta \) = efficiency
- \(W \) = work done per revolution
- \(P_i \) = indicated power
- \(S \) = number of stages

Free air flow:

\[Q = \left(V_i - V_c \right) \frac{T}{T_1} \frac{p_2}{p_1} N Z \]

where: \(V_i = \left(V_s + V_c \right) \).

Mass flow:

\[\dot{m} = \frac{Q p}{RT} \]

Indicated power:

\[P_i = \frac{n}{(n-1)} \dot{m} R (T_2 - T_1) \]

where: \(T_2 = T_1 \left(\frac{n-1}{n} \right) \) and \(r = \frac{p_2}{p_1} \).

Volumetric efficiency:

\[\eta_v = 1 - \frac{V_c}{V_s} \left(r_n^2 - 1 \right) \]

Clearance ratio:

\[\text{CR} = \frac{V_c}{V_s} \]

Also:

\[\frac{V_d}{V_c} = r_n^{1/2} \]
3.11.2 Multi-stage compressor

For S stages, the ideal pressure for each stage is:

$$r_i = \left(\frac{p_2}{p_1} \right)^{\frac{1}{S}}$$

for which

Indicated power $P_i = \frac{Sn}{(n-1)} \dot{m} R (T_2 - T_1)$

Isentropic work $W_i = p_i V_i \left(\frac{\gamma}{\gamma-1} \right) \left(\frac{r_i^{\gamma-1}}{r_i} \right) - 1$)

Efficiency $\eta = \frac{W_i}{W} = \frac{\gamma}{\gamma-1} \left(\frac{r_i^{\gamma-1}}{r_i} \right) - 1$)

The efficiency is increased by using more than one stage if intercooling is used between the stages to reduce ideally the temperature of the air to that at the first stage inlet. The cylinders become progressively smaller as the pressure increases and volume decreases.

3.11.3 Roots blower

This has two rotors with 2, 3 or 4 lobes which rotate in opposite directions so that the lobes mesh. Compression takes place at approximately constant volume.

Work input per revolution $W = p_i V_i (r - 1)$

where: $r = \frac{P_2}{P_1}$

Typical efficiencies

<table>
<thead>
<tr>
<th>r</th>
<th>1.2</th>
<th>1.6</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>0.95</td>
<td>0.84</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Pressure ratio ≤ 2.0 for one stage

≤ 3.0 for two stages

Size: $0.14 - 1400 \text{ m}^3 \text{ min}^{-1}$

3.11.4 Vane compressor

The simplest type consists of a rotor mounted eccentrically in a cylindrical casing. The rotor has a number of radial slots in which are mounted sliding vanes, often of non-metallic material, between which the air is trapped. Reduction in the volume between vanes as the
3.12.1 Power and flow rate

Referring to the $p-V$ diagram:

Power $P = N \left[p_1(V_1 - V_6) + \frac{(p_1V_1 - p_2V_2)(n-1)}{n-1} - p_3(V_3 - V_4) - \frac{(p_3V_3 - p_4V_4)}{n-1} \right]$

where $n =$ index of expansion and compression.

Mass flow rate of air $\dot{m} = N \left(\frac{p_1V_1}{RT_1} \right) \left(\frac{p_4V_4}{RT_4} \right)$

where $\frac{p_3}{p_4} = \left(\frac{V_3}{V_4} \right)^n$ and $\frac{p_1}{p_2} = \left(\frac{V_1}{V_2} \right)^n$.

Constant-volume work done $W_v = \frac{(p_2 - p_1)V_4}{r_1^{\frac{1}{\gamma}}}$

where $r_1 = \frac{p_2}{p_1}$

Total work done per revolution $W_i = W_i + W_v$

Pressure ratio: ≤ 8.5 normally

20 in special cases.

Size: $\leq 150 m^3 min^{-1}$

A two-stage vane compressor is shown in the figure.

3.12 Reciprocating air motor

Reciprocating air motors are used extensively for tools such as breakers, picks, riveters, vibrators and drillers. They are useful where there is fire danger such as in coal mines. The operating cycle is the reverse of that for the reciprocating compressor.
3.13 Refrigerators

Two basic types are considered, the 'vapour compression refrigerator' and the 'gas refrigerator'. The former consists of a compressor followed by a condenser where the refrigerant is liquified at high pressure. It is then expanded in a 'throttle valve' to a lower pressure and temperature and finally evaporated in an 'evaporator' before re-entry into the compressor. The cycle is similar to the Rankine cycle in reverse.

The gas cycle is the reverse of a closed gas-turbine cycle, i.e. the constant pressure or Joule cycle.

3.13.1 Vapour compression cycle

The process can be shown on the temperature entropy (T-s) chart for the appropriate refrigerant, e.g. ammonia or Freon.

1) Compression
 Work $W = h_2 - h_1$
 where: $h_1 = h_s$ at p_1, $h_2 = \text{enthalpy at } p_2$, $s_2 = s_1$ (since isentropic compression).

2) Condensation at constant pressure p_2.
3) Under-cooling from $T_3(= T_s$ at p_2) to T_4.
 Degree of undercooling $\Delta T = T_3 - T_4$
4) Throttling from 4 to 5. Therefore $h_5 = h_4$ and $h_4 = h_s$ at T_4.
5) Evaporation at pressure p_1.

Refrigeration effect $RE = h_1 - h_5$

Coefficient of performance $COP = \frac{RE}{W}$

Heat removed $Q = \dot{m}RE$
where: $\dot{m} = \text{mass flow rate of refrigerant}$.

3.13.2 Pressure-enthalpy chart

The pressure-enthalpy chart is a more convenient way of showing refrigeration cycles. Work in and refrigeration effect can be measured directly as the length of a line.

If p_1, p_2 and the under cooling temperature T_4 are known, the diagram can be easily drawn and RE and W scaled off as shown.

3.13.3 Gas refrigeration cycle

Referring to the T-s diagram:
Refrigeration effect \(RE = c_p(T_1 - T_3) + c_p\eta_t(T_3 - T_4) \)

Work in \(W = c_p\frac{(T_2 - T_1)}{\eta_c} - c_p\eta_t(T_3 - T_4) \)

Coefficient of performance \(COP = \frac{RE}{W} \)

where: \(\frac{T_1}{T_2} = \frac{T_4}{T_3} = \left(\frac{p_1}{p_2} \right)^{\gamma} \), \(\eta_t = \) turbine isentropic efficiency, \(\eta_c = \) compressor isentropic efficiency.

3.14 Heat transfer

Heat may be transmitted by conduction, convection or radiation.

3.14.1 Conduction

Heat transfer by conduction is the transfer of heat from one part of a substance to another without appreciable displacement of the molecules of the substance, e.g. heat flow along a bar heated at one end. This section deals with conduction of heat through a flat wall, a composite wall, a cylindrical wall and a composite cylindrical wall. A table of thermal-conductivity coefficients is given.

3.14.2 Conduction through wall

Let:
- \(k = \) conductivity of wall, Wm\(^{-1}\)K\(^{-1}\)
- \(A = \) area of wall, m\(^2\)
- \(x = \) thickness of wall, m
- \(t = \) temperature (°C)
- \(q = \) heat flow rate, W
- \(h = \) heat transfer coefficient, Wm\(^{-2}\)K\(^{-1}\)
- \(U = \) overall heat transfer coefficient, Wm\(^{-2}\)K\(^{-1}\)
- \(R = \) thermal resistance K/W

Heat flow \(q = \frac{kA}{x}(t_1 - t_2) \)

Overall heat transfer coefficient \(U = \frac{k}{x} \)

Therefore, \(q = UA(t_1 - t_2) \)

Thermal resistance \(R = \frac{x}{kA} = \frac{1}{UA} \)

Conduction from fluid to fluid through wall

In this case the surface coefficients are taken into account.

\[q = Ah_a(t_a - t_1) = \frac{kA}{x}(t_1 - t_2) = Ah_b(t_2 - t_b) \]
THERMODYNAMICS AND HEAT TRANSFER

\[U = \frac{1}{h_1 + \frac{x}{k} + h_2} \]

\[q = UA(t_a - t_b) \]

\[R = \frac{1}{h_s A} + \frac{1}{h_b A} + \frac{x}{kA} = R_s + R_b + R \]

Conduction through composite wall

\[q = UA(t_a - t_b) \]

\[U = \frac{1}{(R_s + R_1 + R_2 + \ldots + R_b)A} \]

\[R = R_s + R_1 + R_2 + \ldots + R_b \]

where: \(R_1 = \frac{x_1}{k_1 A_1} \), \(R_2 = \frac{x_2}{k_2 A_2} \), etc.

cylinder wall

\[q = \frac{2nk(t_1 - t_2)L}{\ln \frac{r_2}{r_1}} = kA_m (t_1 - t_2) \]

\[A_1 = 2\pi r_1 L; \quad A_2 = 2\pi r_2 L; \quad A_m = \frac{A_2 - A_1}{\ln \frac{r_2}{r_1}} \]

\[x = r_2 - r_1, \quad L = \text{Length of cylinder} \]

Conduction through composite cylinder fluid to fluid

A typical example is a lagged pipe.

\[q = \frac{(t_a - t_b)}{R} \]

\[R = \frac{1}{h_s A_s} + \frac{x_1}{k_1 A_{m_1}} + \frac{x_2}{k_2 A_{m_2}} + \ldots + \frac{1}{h_b A_b} \]

3.14.4 Heat transfer from fins

The heat flow depends on the rate of conduction along the fin and on the surface heat-transfer coefficient. The theory involves the use of hyperbolic functions.

Fin of constant cross-section with insulated tip

Let:

\[L = \text{fin length} \]

\[A = \text{fin cross-sectional area} \]

\[P = \text{perimeter of fin} \]

\[k = \text{conductivity} \]

\[h = \text{surface heat-transfer coefficient} \]

\[t_a = \text{air temperature} \]

\[t_r = \text{fin root temperature} \]

Heat flow from fin, \(q = kA(t_r - t_a) \text{tanh } mL \)

where: \(m = \frac{\sqrt{hP}}{kA} \).
Fin efficiency \(\eta = \frac{\text{Heat flow from fin}}{\text{Heat flow if fin all at } t_r} \)
\(= \frac{q}{hPL(t_r - t_s)} \)

If fin has constant cross-section and is insulated at the end:

Efficiency \(\eta = \frac{\tanh mL}{mL} \)

Temperature profile along fin:

Temperature at distance \(x \) from root

\(t_x = t_s + (t_r - t_s) \frac{\cosh m(L - x)}{\cosh mL} \)

Fins on a circular pipe

Constant thickness:

Efficiency \(\eta = \frac{q}{hA_s(t_r - t_s)} \)

where: \(A_s = \text{surface area} = \pi(r_2^2 - r_1^2) + 2\pi r_1 t \).

Efficiency is plotted against the function \(\sqrt{\frac{hL^3}{kA}} \) in the figure where \(L = \text{fin length} = (r_2 - r_1) \) and \(A = \text{cross-sectional area} = tL \).

Hyperbolic section circular fins: curves are given for hyperbolic fins using the appropriate values of \(A_s \) and \(A \).

![Hyperbolic section circular fins](image)

Straight fins

Similar efficiency curves are given in the figures for straight fins of various shapes.
3.14.5 Thermal conductivity coefficient

The following table gives values of conductivity for solids, liquids and gases.

<table>
<thead>
<tr>
<th>Metals</th>
<th>Liquids</th>
<th>Plastics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>239</td>
<td>Benzene</td>
</tr>
<tr>
<td>Antimony</td>
<td>18</td>
<td>Carbon tetrachloride</td>
</tr>
<tr>
<td>Brass (60/40)</td>
<td>96</td>
<td>Ethanol</td>
</tr>
<tr>
<td>Cadmium</td>
<td>92</td>
<td>(ethyl alcohol)</td>
</tr>
<tr>
<td>Chromium</td>
<td>67</td>
<td>Ether</td>
</tr>
<tr>
<td>Cobalt</td>
<td>69</td>
<td>Glycerine</td>
</tr>
<tr>
<td>Constantan</td>
<td>22</td>
<td>Kerosene</td>
</tr>
<tr>
<td>Copper</td>
<td>386</td>
<td>Mercury</td>
</tr>
<tr>
<td>Gold</td>
<td>310</td>
<td>Methanol</td>
</tr>
<tr>
<td>Inconel</td>
<td>15</td>
<td>(methyl alcohol)</td>
</tr>
<tr>
<td>Iron, cast</td>
<td>55</td>
<td>Oil: machine</td>
</tr>
<tr>
<td>Iron, pure</td>
<td>80</td>
<td>transformer</td>
</tr>
<tr>
<td>Lead</td>
<td>35</td>
<td>Water</td>
</tr>
<tr>
<td>Magnesium</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Monel</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>92</td>
<td>Air</td>
</tr>
<tr>
<td>Platinum</td>
<td>67</td>
<td>Ammonia</td>
</tr>
<tr>
<td>Silver</td>
<td>419</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>Steel: mild</td>
<td>50</td>
<td>Helium</td>
</tr>
<tr>
<td></td>
<td>stainless</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>Tin</td>
<td>67</td>
<td>Methane</td>
</tr>
<tr>
<td>Tungsten</td>
<td>172</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>Uranium</td>
<td>28</td>
<td>Oxygen</td>
</tr>
<tr>
<td>Zinc</td>
<td>113</td>
<td>Water vapour</td>
</tr>
</tbody>
</table>

Refrigerants at critical temperature

- Ammonia (132.4°C) | 0.049
- Ethyl chloride (187.2°C) | 0.095
- Freon 12 (112°C) | 0.076
- Freon 22 (97°C) | 0.10
- Sulphur dioxide (157.2°C) | 0.0087

Insulating materials

- Asbestos cloth | 0.13
- Balsa wood (average) | 0.048
- Calcium silicate | 0.05
- Compressed straw slab | 0.09
- Corkboard | 0.04
- Cotton wool | 0.029
- Diatomaceous earth | 0.06
- Diatomite | 0.12
- Expanded polystyrene | 0.03/0.04
Thermal conductivity coefficients (W m\(^{-1}\) K\(^{-1}\)) at 20°C and 1 bar (continued)

<table>
<thead>
<tr>
<th>Miscellaneous materials</th>
<th>Insulating materials, cont.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>Felt</td>
</tr>
<tr>
<td>Bitumen</td>
<td>Glass fibre quilt</td>
</tr>
<tr>
<td>Breeze block</td>
<td>Glass wool quilt</td>
</tr>
<tr>
<td>Brickwork: common</td>
<td>Hardboard</td>
</tr>
<tr>
<td></td>
<td>Kapok</td>
</tr>
<tr>
<td></td>
<td>Magnesia</td>
</tr>
<tr>
<td></td>
<td>Mineral wool quilt</td>
</tr>
<tr>
<td></td>
<td>Plywood</td>
</tr>
<tr>
<td></td>
<td>Polyurethane foam</td>
</tr>
<tr>
<td></td>
<td>Rock wool</td>
</tr>
<tr>
<td></td>
<td>Rubber, natural</td>
</tr>
<tr>
<td></td>
<td>Sawdust</td>
</tr>
<tr>
<td></td>
<td>Slag wool</td>
</tr>
<tr>
<td></td>
<td>Urea formaldehyde</td>
</tr>
<tr>
<td></td>
<td>Wood</td>
</tr>
<tr>
<td></td>
<td>Wood wool slab</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt</td>
<td>1.26</td>
</tr>
<tr>
<td>Bitumen</td>
<td>0.17</td>
</tr>
<tr>
<td>Breeze block</td>
<td>0.10–0.20</td>
</tr>
<tr>
<td>Brickwork: common</td>
<td>0.6–1.0</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td>Carbon</td>
<td>1.7</td>
</tr>
<tr>
<td>Concrete: lightweight</td>
<td>0.1–0.3</td>
</tr>
<tr>
<td></td>
<td>0.4–0.7</td>
</tr>
<tr>
<td></td>
<td>1.0–1.8</td>
</tr>
<tr>
<td>Firebrick (600°C)</td>
<td>1.09</td>
</tr>
<tr>
<td>Glass: crown</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>0.84</td>
</tr>
<tr>
<td>Pyrex</td>
<td>1.30</td>
</tr>
<tr>
<td>Ice</td>
<td>2.18</td>
</tr>
<tr>
<td>Limestone</td>
<td>1.10</td>
</tr>
<tr>
<td>Mica</td>
<td>0.75</td>
</tr>
<tr>
<td>Cement</td>
<td>1.01</td>
</tr>
<tr>
<td>Paraffin wax</td>
<td>0.25</td>
</tr>
<tr>
<td>Porcelain</td>
<td>1.05</td>
</tr>
<tr>
<td>Sand</td>
<td>0.06</td>
</tr>
<tr>
<td>Sandstone</td>
<td>3.00</td>
</tr>
<tr>
<td>Slate</td>
<td>2.01</td>
</tr>
<tr>
<td>Glass: flint</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.14.6 Convection

Convection is the transfer of heat in a fluid by the mixing of one part of the fluid with another. Motion of the fluid may be caused by differences in density due to temperature differences as in 'natural convection' (or 'free convection'), or by mechanical means, such as pumping, as in 'forced convection'.

3.14.7 Dimensionless groups

In the study of heat transfer by convection it is convenient to plot curves using dimensionless groups. Those commonly used are:

- Reynold’s number \(\text{Re} = \frac{\rho CL}{\mu} \)
- Nusselt number \(\text{Nu} = \frac{hL}{k} \)
- Prandtl number \(\text{Pr} = \frac{c\mu}{k} \)

\[\text{Stanton number} \quad \text{St} = \frac{h}{\rho c C} = \frac{\text{Nu}}{\text{RePr}} \]

\[\text{Grashof number} \quad \text{Gr} = \frac{\beta \rho \theta^3 L^3}{\mu^2} \]

where:
- \(\rho \) = fluid density
- \(\mu \) = fluid viscosity
- \(k \) = fluid conductivity
- \(c \) = fluid specific heat
- \(\beta \) = fluid coefficient of cubical expansion
- \(C \) = fluid velocity
- \(g \) = acceleration due to gravity
- \(L \) = characteristic dimension
- \(h \) = heat transfer coefficient
- \(\theta \) = fluid temperature difference

3.14.8 Natural convection

Natural convection from horizontal pipe

Nusselt number \(\text{Nu} = \frac{hL}{k} \)
\[\text{Nu} = 0.47(PrGr)^{0.25} \text{ for } PrGr = 10^5 \text{ to } 10^8 \]
\[\text{Nu} = 0.10(PrGr)^{0.33} \text{ for } PrGr > 10^8 \]

Approximate heat transfer coefficient:
\[h = 1.32 \left(\frac{\theta}{d} \right)^{0.25} \text{ for } Gr = 10^4 \text{ to } 10^9 \]
\[h = 1.25\theta^{0.33} \text{ for } Gr = 10^9 \text{ to } 10^{12} \]

where:
\[\theta = \text{temperature difference between cylinder and fluid} \]
\[d = \text{diameter of cylinder} \]

Natural convection from a vertical plate or cylinder

\[\text{Nu} = 0.56(GrPr)^{0.25} \text{ for } PrGr = 10^5 \text{ to } 10^8 \]
\[\text{Nu} = 0.12(GrPr)^{0.33} \text{ for } PrGr > 10^8 \]

Approximately:
\[h = 1.42 \left(\frac{\theta}{L} \right)^{0.25} \text{ for } Gr = 10^4 \text{ to } 10^9 \]
\[h = 1.31\theta^{0.33} \text{ for } Gr = 10^9 \text{ to } 10^{12} \]

Horizontal plate facing upwards

Characteristic dimension \(L = \frac{a+b}{2} \)

\[\text{Nu} = 0.54(GrPr)^{0.25} \text{ for } GrPr = 10^5 \text{ to } 10^8 \]
\[\text{Nu} = 0.14(GrPr)^{0.33} \text{ for } GrPr > 10^8 \]
Horizontal plate facing downwards

\[\text{Nu} = 0.25(\text{GrPr})^{0.25} \text{ for GrPr} > 10^5 \]

\[a \]
\[b \]
\[q \]

3.14.9 Forced convection

Laminar flow in pipe

\[\text{Nu} = 3.65 \text{ and } h = 3.65 \frac{k}{d} \]

Turbulent flow over cylinder

Generally: \[\text{Nu} = 0.26 \text{Re}^{0.6} \text{Pr}^{0.3} \]

For gases: \[\text{Nu} = 0.24 \text{Re}^{0.6} \]

Turbulent flow over flat plate

Let:

\[L = \text{the distance from the leading edge over which heat is transferred} \]
\[C = \text{fluid velocity} \]

For a small temperature difference:

\[\text{Nu} = 0.332 \text{Re}^{0.5} \text{Pr}^{0.33} + L \]

For a large temperature difference:

\[\text{Nu} = 0.332 \text{Re}^{0.5} \text{Pr}^{0.33} \]

where:

\[T_p = \text{plate temperature}, \quad T_f = \text{mean fluid temperature}. \]
\[\text{Re} = \frac{\rho CL}{\mu}; \quad \text{Nu} = \frac{hL}{k} \]

Turbulent flow in pipe

Heat transfer coefficient \[h = \frac{k\text{Nu}}{d} \]

Turbulent flow over banks of pipes

Generally: \[\text{Nu} = 0.33C_s \text{Re}^{0.6} \text{Pr}^{0.3} \]

For gases: \[\text{Nu} = 0.30C_s \text{Re}^{0.6} \]

In-line pipes: \[C_s \approx 1.0 \]

Staggered pipes: \[C_s \approx 1.1 \]
Reynold's number \(Re = \frac{\rho Cd}{\mu} \)

Nusselt number \(Nu = 0.0243Re^{0.8}Pr^{0.4} \)

\(= 0.02Re^{0.8} \) for gases

For non-circular pipes use:

\[
d = \frac{4 \times \text{Area of cross-section}}{\text{Inside perimeter}}
\]

Heat transferred \(q = hA\theta_m \)

where: \(\theta_m = \frac{\theta_1 - \theta_2}{\ln \frac{\theta_1}{\theta_2}} \)

and \(\theta_1 \) and \(\theta_2 \) are the temperature differences at each end of a plate or tube between fluid and surface. \(\theta_m \) is called the 'logarithmic mean temperature difference'.

3.14.10 Evaluation of Nu, Re and Pr

The fluid properties must be evaluated for a suitable mean temperature. If the temperature difference between the bulk of the fluid and the solid surface is small, use the 'mean bulk temperature' of the fluid, e.g. the mean of inlet and outlet temperatures for flow in a pipe. If the difference is large, use the 'mean film temperature' \(t_f = (\text{Mean bulk temperature} + \text{Surface temperature})/2 \).

3.14.11 Radiation of heat

Radiated heat is electromagnetic radiation like light, radiowaves, etc., and does not require a medium for its propagation. The energy emitted from a hot body is proportional to the fourth power of its absolute temperature.

Symbols used:
- \(q \) = radiated energy flow (watts)
- \(T_i \) = temperature of radiating body (K)
- \(T_s \) = temperature of surroundings (K)
- \(A_i \) = area of radiating body (m\(^2\))
- \(A_r \) = area of receiving body (m\(^2\))
- \(e_1 \) = emissivity of radiating body (= 1 for black body)
- \(e_2 \) = emissivity of surroundings
- \(e \) = emissivity of intermediate wall
- \(\sigma \) = Stefan-Boltzmann constant
 \((= 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}) \)
- \(f \) = interchange factor
- \(F \) = geometric factor
- \(h_r \) = heat transfer coefficient for radiation
 \((\text{W m}^{-2} \text{ K}^{-1}) \)

Heat radiated from a body to surroundings

\[
q = \sigma e_1 (T_i^4 - T_s^4) A_i \text{ (watts)}
\]

Taking into account emissivity of surroundings

\[
q = \sigma (e_1 T_i^4 - e_2 T_s^4) A_i \text{ (watts)}
\]

Interchange factor \(f \)

This takes into account the shape, size and relative positions of bodies.

1. Large parallel planes: \(f = \frac{e_1 e_2}{e_1 + e_2 - e_1 e_2} \)
Parallel surfaces with intermediate wall

Let:
\[T = \text{wall temperature} \]
\[e = \text{emissivity of wall} \]

For side 1:
\[f_1 = \frac{e_1 e}{e_1 + e - e_1 e} \]

For side 2:
\[f_2 = \frac{e_2 e}{e_2 + e - e_2 e} \]

Intermediate temperature:
\[T^4 = \frac{f_1 T_1^4 + f_2 T_2^4}{f_1 + f_2} \]
\[q = f_1 \sigma A(T_1^4 - T^4) = f_2 \sigma A(T^4 - T_2^4) \]

3.14.12 Emissivity of surfaces

Emissivity depends not only on the material but also to a large extent on the nature of the surface, being high for a matt surface (e.g. 0.96 for matt black paint) and low for a polished surface (e.g. 0.04 for polished aluminium).
3.15 Heat exchangers

In a heat exchanger, heat is transferred from one fluid to another either by direct contact or through an intervening wall. Heat exchangers are used extensively in engineering and include air coolers and heaters, oil coolers, boilers and condensers in steam plant, condensers and evaporators in refrigeration units, and many other industrial processes.

There are three main types of heat exchanger: the 'recuperator', in which the fluids exchange heat through a wall; the 'regenerative', in which the hot and cold fluids pass alternately through a space containing a porous solid acting as a heat sink; and 'evaporative', in which a liquid is cooled evaporatively and continuously, e.g. as in a cooling tower. The following deals with the recuperative type.

3.15.1 Shell and tube heat exchangers

One fluid flows through a series of pipes and the other through a shell surrounding them. Flow may be either 'parallel' (both fluids moving in the same direction) or 'counter flow' (fluids moving in opposite directions). Another possibility is the 'cross-flow' arrangement in which the flows are at right angles. Other types have more complex flows, e.g. the 'multi-pass' and 'mixed-flow' types. The following formulae give the heat transferred, the logarithmic mean temperature difference and the 'effectiveness'.

Symbols used:
- \(U \) = overall heat transfer coefficient
- \(A \) = surface area of tubes (mean)
- \(h_a \) = heat transfer coefficient for hot side
- \(h_b \) = heat transfer coefficient for cold side
- \(\theta \) = temperature difference (°C)
- \(t \) = Temperature (°C)
- \(\theta_1 = t_a - t_b; \quad \theta_2 = 2t_a - t_b \)

Parallel flow

Logarithmic mean temperature difference

\[
\theta_m = \frac{\theta_1 - \theta_2}{\ln \frac{\theta_1}{\theta_2}}
\]

Emissivity of surfaces (0–50°C except where stated)

<table>
<thead>
<tr>
<th>Material</th>
<th>Emissivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium: oxidized polished</td>
<td>0.11, 0.12</td>
</tr>
<tr>
<td>Aluminium-coated paper, polished</td>
<td>0.20</td>
</tr>
<tr>
<td>Aluminium, dull</td>
<td>0.20</td>
</tr>
<tr>
<td>Asbestos board</td>
<td>0.05 (average)</td>
</tr>
<tr>
<td>Black body (matt black)</td>
<td>1.00</td>
</tr>
<tr>
<td>Brass: dull polished</td>
<td>0.22, 0.24</td>
</tr>
<tr>
<td>Copper: oxidized polished</td>
<td>0.87, 0.83</td>
</tr>
<tr>
<td>Glass</td>
<td>0.92</td>
</tr>
<tr>
<td>Marble, polished</td>
<td>0.93</td>
</tr>
<tr>
<td>Tile</td>
<td>0.97</td>
</tr>
<tr>
<td>Water</td>
<td>0.95</td>
</tr>
<tr>
<td>Wood</td>
<td>0.90</td>
</tr>
<tr>
<td>Paint: white black gloss</td>
<td>0.95, 0.91</td>
</tr>
<tr>
<td>Paper</td>
<td>0.93</td>
</tr>
<tr>
<td>Plastics</td>
<td>0.91 (average)</td>
</tr>
<tr>
<td>Rubber: natural, polished</td>
<td>0.86</td>
</tr>
<tr>
<td>Steel: oxidized</td>
<td>0.79, 0.79</td>
</tr>
<tr>
<td>Steel: stainless weathered</td>
<td>0.85, 0.85</td>
</tr>
<tr>
<td>Steel: galvanized weathered</td>
<td>0.88, 0.90</td>
</tr>
<tr>
<td>Steel: stainless new</td>
<td>0.23, 0.42</td>
</tr>
</tbody>
</table>
Heat transferred \(q = UA\theta_m \)

Overall coefficient \(U = \frac{1}{\frac{1}{h_a} + \frac{1}{h_b}} \)

Heat-exchanger effectiveness \(E = \frac{t_a - t_b}{t_a - t_b} \)

Note: if one of the fluids is a wet vapour or a boiling liquid, the temperature is constant and \(t_a = t_b \).

Counter flow

The temperature range possible is greater than for the parallel-flow type. The same formulae apply.

Cross-flow

Instead of using \(\theta_m \) as above, \(\theta_m K \) is used, where \(K \) is a factor obtained from tables.

\(q = UA\theta_m \)

If one fluid is a wet vapour (constant temperature), \(\theta_m \) is the same as for parallel-flow and counter-flow types.

If \(\theta_1 \) and \(\theta_2 \) are nearly the same, the arithmetic mean temperature difference is used:

\[\theta_m = \frac{\theta_1 + \theta_2}{2} \]

3.15.2 Multi-pass and mixed-flow heat exchangers

In some cases the values for \(\theta_m \) for parallel- and counter-flow types may be used for these, with reasonable accuracy. Otherwise, correction factors must be used.

Multi-pass-type heat exchanger

Mixed-flow-type heat exchanger

3.15.3 Steam condenser

The steam condenser is a particular type of heat exchanger in which one fluid is usually cooling water and the other wet steam which condenses on the tubes carrying the cooling water. It is assumed that the steam temperature is constant throughout (i.e. at the saturation temperature). Formulae for cooling-water flow
rate and the number and dimensions of the tubes are given.

Symbols used:
- \(\dot{m}_c \): cooling water mass flow (kg s\(^{-1}\))
- \(\dot{m}_s \): steam mass flow (kg s\(^{-1}\))
- \(h_{fg} \): latent heat of steam (kJ kg\(^{-1}\))
- \(x \): dryness fraction of steam
- \(c \): specific heat capacity of water
- \(h_o \): overall heat transfer coefficient (kW m\(^{-2}\) K\(^{-1}\))
- \(t_1 \): water inlet temperature (°C)
- \(t_2 \): water outlet temperature (°C)
- \(t_s \): steam saturation temperature (°C)
- \(C_i \): velocity of water in tubes (m s\(^{-1}\))
- \(A_t \): area of tube bore (m\(^2\))
- \(D_t \): outside diameter of tubes (m)
- \(n_t \): number of tubes per pass
- \(n_p \): number of tube passes
- \(L \): tube length (m)
- \(A_s \): surface area of tubes (m\(^2\))
- \(\rho \): density of water (kg m\(^{-3}\))

Cooling water flow
\[
\dot{m}_c = \frac{\dot{m}_s h_{fg}}{c(t_2 - t_1)}
\]

Overall heat transfer coefficient
\[
h_o = 1.14 \left(\frac{C_i}{1.5} \right)^{0.5} \left(\frac{t + 18}{56} \right)^{0.25}
\]

where: \(t = (t_1 + t_2)/2 \).

Surface area of tubes
\[
A_s = \frac{1.25 \dot{m}_s h_{fg} x}{h_o \theta_m}
\]

(assuming 25% allowance for fouling)

where: \(\theta_m \): logarithmic mean temperature difference
\[
\frac{(t_s - t_1) - (t_s - t_2)}{\ln \left(\frac{t_s - t_1}{t_s - t_2} \right)}
\]

(assuming no undercooling of condensate)

Number of tubes per pass
\[
n_t = \frac{\dot{m}_s}{\rho A_t C_i}
\]

Tube length
\[
L = A_s / \pi D_t n_t n_p
\]

3.16 Combustion of fuels

3.16.1 Air–fuel ratio and mixture strength

The following deals with the combustion of solid, liquid and gaseous fuels with atmospheric air. The fuels are supposed to be composed only of carbon, hydrogen and sulphur, with perhaps oxygen and ash. The carbon, hydrogen and sulphur combine with the oxygen in the air; the nitrogen in the air remains unchanged.

The correct proportion of air for complete combustion is called the 'stoichiometric air/fuel ratio'. Usually the proportion of air is higher and the mixture is said to be 'weak' or 'lean'. With less air the combustion is incomplete and the mixture is said to be 'rich' (see table).

Definitions:
- Air/fuel ratio \(R = \frac{\text{Amount of air}}{\text{Amount of fuel}} \)
- Stoichiometric air/fuel ratio \(R_s = \) ratio for complete combustion
- Percentage excess air \(E = \frac{(R - R_s)}{R_s} \times 100\% \)
Mixture strength \(M_s = \frac{R}{R} \times 100\% \)

Weak mixture \(M_s < 100\% \)
Rich mixture \(M_s > 100\% \)

Therefore: \(E = \frac{(100 - M_s)}{M_s} \times 100\% \)

3.16.2 Combustion equations

The following are the basic equations normally used for combustion processes. A table of elements and compounds is given.

Carbon: \(C + O_2 \rightarrow CO_2; \ 2C + O_2 \rightarrow 2CO \)
Hydrogen: \(2H_2 + O_2 \rightarrow 2H_2O \)
Sulphur: \(S + O_2 \rightarrow SO_2 \)

Typical hydrocarbon fuels:
\(C_4H_8 + 6O_2 \rightarrow 4CO_2 + 4H_2O \)
\(C_2H_6O + 3O_2 \rightarrow 2CO_2 + 3H_2O \)

Carbon with air (assuming that air is composed of 79% nitrogen and 21% oxygen by volume):
\[C + \frac{79}{21} N_2 \rightarrow CO_2 + \frac{79}{21} N_2 \] (by volume)
\[12C + 32O_2 + \frac{28 \times 79}{21} N_2 \rightarrow 44CO_2 + \frac{28 \times 79}{21} N_2 \] (by mass)

since the molecular weights of \(C, O_2, CO_2 \) and \(N_2 \) are 12, 32, 44 and 28.

3.16.3 Molecular weights of elements and compounds

The molecular weights of elements and compounds used in combustion processes are listed in the table.

<table>
<thead>
<tr>
<th>Element</th>
<th>Formula</th>
<th>Approximate molecular weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>(C_6H_6)</td>
<td>78</td>
</tr>
<tr>
<td>Butane</td>
<td>(C_4H_{10})</td>
<td>58</td>
</tr>
<tr>
<td>Carbon</td>
<td>(C)</td>
<td>12</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>(CO)</td>
<td>28</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>(CO_2)</td>
<td>44</td>
</tr>
<tr>
<td>Ethane</td>
<td>(C_2H_6)</td>
<td>30</td>
</tr>
<tr>
<td>Ethanol</td>
<td>(C_2H_5OH)</td>
<td>46</td>
</tr>
<tr>
<td>Ethene</td>
<td>(C_2H_4)</td>
<td>28</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>(H)</td>
<td>2</td>
</tr>
<tr>
<td>Methane</td>
<td>(CH_4)</td>
<td>16</td>
</tr>
<tr>
<td>Methanol</td>
<td>(CH_3OH)</td>
<td>32</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>(N_2)</td>
<td>28</td>
</tr>
<tr>
<td>Octane</td>
<td>(C_8H_{18})</td>
<td>114</td>
</tr>
<tr>
<td>Oxygen</td>
<td>(O_2)</td>
<td>32</td>
</tr>
<tr>
<td>Pentane</td>
<td>(C_5H_{12})</td>
<td>72</td>
</tr>
<tr>
<td>Propane</td>
<td>(C_3H_8)</td>
<td>44</td>
</tr>
<tr>
<td>Propene</td>
<td>(C_3H_6)</td>
<td>42</td>
</tr>
<tr>
<td>Sulphur</td>
<td>(S)</td>
<td>32</td>
</tr>
<tr>
<td>Sulphur monoxide</td>
<td>(SO)</td>
<td>48</td>
</tr>
<tr>
<td>Sulphur dioxide</td>
<td>(SO_2)</td>
<td>64</td>
</tr>
<tr>
<td>Water (steam)</td>
<td>(H_2O)</td>
<td>18</td>
</tr>
</tbody>
</table>

Engine exhaust and flue gas analysis

If the analysis includes the \(H_2O \) (as steam) produced by the combustion of hydrogen, it is known as a 'wet analysis'. Usually the steam condenses out and a 'dry analysis' is made.

3.16.4 Solid and liquid fuels

Let: \(c = %C, \ h = %H_2, \ o = %O_2, \ n = %N_2, \ s = %S, \) all by mass.

Stoichiometric air/fuel ratio \(R_s = \frac{2.67c + 8h + s - o}{23.3} \)

If: \(x = 0.84c + 0.3135s + 0.357n + 0.0728ER_s + 27.4R \)
\[y = x + Sh \] (using \(E = 0 \) for a stoichiometric air/fuel ratio)
Combustion products (% volume)

<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>H₂O</th>
<th>SO₂</th>
<th>O₂</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet analysis</td>
<td>84 c/y</td>
<td>500 h/y</td>
<td>31.3 s/y</td>
<td>7.28 ERₚ y</td>
<td>35.7n + 2740R y</td>
</tr>
<tr>
<td>Dry analysis</td>
<td>84 c/x</td>
<td>0</td>
<td>31.3 s/x</td>
<td>7.28 ERₚ x</td>
<td>35.7n + 2740R x</td>
</tr>
</tbody>
</table>

3.16.5 Hydrocarbon fuels, solid and liquid

Weak mixture

Let: c = %C, h = %H₂, both by mass.

Then:
\[R_s = \frac{2.67c + 8h}{23.3} \]
\[x = 0.84c + 0.0728ERₚ + 27.4R \]
\[y = x + 5h \]

Combustion products (% volume)

<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>H₂O</th>
<th>O₂</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet analysis</td>
<td>84 c/y</td>
<td>500 h/y</td>
<td>7.28 ERₚ y</td>
<td>2740 R y</td>
</tr>
<tr>
<td>Dry analysis</td>
<td>84 c/x</td>
<td>0</td>
<td>7.28 ERₚ x</td>
<td>2740 R x</td>
</tr>
</tbody>
</table>

Rich mixture (\(M_s > 100\%\))

\[n = \frac{31.3(c + 3h)}{M_s} \]
\[a = 0.532n - \frac{(c + 6h)}{12} \]
\[b = \frac{c}{12} - a \]
\[x = a + b + n \]
\[y = x + \frac{h}{2} \]
Combustion products (% volume)

<table>
<thead>
<tr>
<th>CO₂</th>
<th>CO</th>
<th>H₂O</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet analysis</td>
<td>100^a_y</td>
<td>100^b_y</td>
<td>50^h_y</td>
</tr>
<tr>
<td>Dry analysis</td>
<td>100^a_x</td>
<td>100^b_x</td>
<td>0</td>
</tr>
</tbody>
</table>

Air/fuel ratio from the CO₂ in the exhaust for fuel consisting of C and H₂ by weight

$$R = 2.4 \frac{%C}{%CO₂} + 0.072%H₂$$

Ratio of carbon to hydrogen by mass from the dry exhaust analysis

$$r = \frac{%C}{%H₂} = \frac{(%CO₂ + %CO + %CH₄)}{(8.858 - 0.422%CO₂ - 0.255%CO + 0.245%CH₄ + 0.078%H₂ - 0.422%O₂)}$$

$$%C = \frac{r}{(1 + r)} 100\%; \ %H₂ = \frac{100\%}{(1 + r)}$$

3.16.6 **Liquid fuels of the type CₚH₄Oᵣ**

Weak mixture

$$Rₛ = 4.292 \frac{(32p + 8q - 16r)}{(12p + q + 16r)}$$

$$x = p + 376 \frac{n}{Mₛ} + \frac{En}{100}$$

$$n = p + \frac{q - r}{4}$$

$$y = x + \frac{q}{2}$$

Combustion products (% volume)

<table>
<thead>
<tr>
<th>CO₂</th>
<th>H₂O</th>
<th>O₂</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet analysis</td>
<td>100^p_y</td>
<td>50^q_y</td>
<td>$\frac{En}{y}$</td>
</tr>
<tr>
<td>Dry analysis</td>
<td>100^p_x</td>
<td>0</td>
<td>$\frac{En}{x}$</td>
</tr>
</tbody>
</table>
Rich mixture

\[
R_s = 4.292 \frac{(32p + 8q - 16r)}{(12p + q + 16r)} \quad b = p - a
\]

\[
n = p + \frac{q - r}{4} \quad x = a + b + \frac{376n}{M_s}
\]

\[
a = r - p - \frac{q}{2} + \frac{200n}{M_s} \quad y = x + \frac{q}{2}
\]

Combustion products (% volume)

<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>CO</th>
<th>H₂O</th>
<th>N₂</th>
</tr>
</thead>
</table>
| Wet analysis | 100⁻ᵃ⁻⁻⁻_velocity

<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>CO</th>
<th>H₂O</th>
<th>N₂</th>
</tr>
</thead>
</table>
| Dry analysis | 100⁻ᵃ⁻⁻_velocity

3.16.7 Gaseous fuels

For a mixture of gases such as H₂, O₂, CO, CH₄, etc., let \(V_1, V_2, V_3, \) etc., be the percentage by volume of gases, 1, 2, 3, etc., containing C, H, and O₂. \(V_n \) and \(V_e \) are the percentage volumes of N₂ and CO₂.

Let:
\(c_1, c_2, c_3, \) etc. = the number of atoms of carbon in each gas
\(h_1, h_2, h_3, \) etc. = the number of atoms of hydrogen in each gas
\(o_1, o_2, o_3, \) etc. = the number of atoms of oxygen in each gas

And let:
\(S_c = c_1 V_1 + c_2 V_2 + \ldots \)
\(S_h = h_1 V_1 + h_2 V_2 + \ldots \)
\(S_o = o_1 V_1 + o_2 V_2 + \ldots \)
\(k = S_c + \frac{S_h}{4} + \frac{S_o}{2} \)

Then:
\(R_s = \frac{k}{21} \quad R = R_s \left(1 + \frac{E}{100} \right) \)
\(x = 100R + \frac{S_o}{2} - \frac{S_h}{4} + V_n \)
\(y = x + \frac{S_h}{2} \)
Combustion products (% volume)

<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>H₂O</th>
<th>O₂</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet analysis</td>
<td>$\frac{S_c + V_c}{y} \times 100$</td>
<td>$50 \frac{S_h}{y}$</td>
<td>$100(21R-k)$</td>
<td>$100(Vn+79R)$</td>
</tr>
<tr>
<td>Dry analysis</td>
<td>$\frac{S_c + V_c}{x} \times 100$</td>
<td>0</td>
<td>$100(21R-k)$</td>
<td>$100(Vn+79R)$</td>
</tr>
</tbody>
</table>

3.16.8 Calorific value of fuels

The calorific value of a fuel is the quantity of heat obtained per kilogram (solid or liquid) or per cubic metre (gas) when burnt with an excess of oxygen in a calorimeter.

If H₂O is present in the products of combustion as a liquid then the 'higher calorific value' (HCV) is obtained. If the H₂O is present as a vapour then the 'lower calorific value' (LCV) is obtained.

$$\text{LCV} = \text{HCV} - 207.4\% \text{H}_2 \text{ (by mass)}$$

Calorific value of fuels

<table>
<thead>
<tr>
<th></th>
<th>Higher calorific value</th>
<th>Lower calorific value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid (kJ kg⁻¹; 15°C)</td>
<td>34 600</td>
<td>33 900</td>
</tr>
<tr>
<td>Anthracite</td>
<td>34 600</td>
<td>33 900</td>
</tr>
<tr>
<td>Bituminous coal</td>
<td>33 500</td>
<td>32 450</td>
</tr>
<tr>
<td>Coke</td>
<td>30 750</td>
<td>30 500</td>
</tr>
<tr>
<td>Lignite</td>
<td>21 650</td>
<td>20 400</td>
</tr>
<tr>
<td>Peat</td>
<td>15 900</td>
<td>14 500</td>
</tr>
</tbody>
</table>

Liquid (kJ kg⁻¹; 15°C)

<table>
<thead>
<tr>
<th></th>
<th>Petrol (gasoline)</th>
<th>average 47 000</th>
<th>average 43 900</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzole (crude benzene)</td>
<td>42 000</td>
<td>40 200</td>
<td></td>
</tr>
<tr>
<td>Kerosene (paraffin)</td>
<td>46 250</td>
<td>43 250</td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>46 000</td>
<td>43 250</td>
<td></td>
</tr>
<tr>
<td>Light fuel oil</td>
<td>44 800</td>
<td>42 100</td>
<td></td>
</tr>
<tr>
<td>Heavy fuel oil</td>
<td>44 000</td>
<td>41 300</td>
<td></td>
</tr>
<tr>
<td>Residual fuel oil</td>
<td>42 100</td>
<td>40 000</td>
<td></td>
</tr>
</tbody>
</table>

Gas (MJ m⁻³; 15°C; 1 bar)

<table>
<thead>
<tr>
<th></th>
<th>Coal gas</th>
<th>20.00</th>
<th>17.85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producer gas</td>
<td>6.04</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>Natural gas</td>
<td>36.20</td>
<td>32.60</td>
<td></td>
</tr>
<tr>
<td>Blast-furnace gas</td>
<td>3.41</td>
<td>3.37</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>11.79</td>
<td>11.79</td>
<td></td>
</tr>
<tr>
<td>Hydrogen</td>
<td>11.85</td>
<td>10.00</td>
<td></td>
</tr>
</tbody>
</table>

3.16.9 Boiler efficiency

This may be based on either the HCV or the LCV.

Boiler efficiency $E_b = \frac{\dot{m}_s(h_b - h_w)}{\dot{m}_f(HCV \text{ or } LCV)}$

where:

- $\dot{m}_s =$ mass flow of steam
- $\dot{m}_f =$ mass flow of fuel
- $h_b =$ enthalpy of steam
- $h_w =$ enthalpy of feed water
Analysis of solid fuels

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Moisture (%mass)</th>
<th>%mass</th>
<th>Volatile matter (%mass of dry fuel)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>H₂</td>
</tr>
<tr>
<td>Anthracite</td>
<td>1</td>
<td>90.27</td>
<td>3.00</td>
</tr>
<tr>
<td>Bituminous coal</td>
<td>2</td>
<td>81.93</td>
<td>4.87</td>
</tr>
<tr>
<td>Lignite</td>
<td>15</td>
<td>56.52</td>
<td>5.72</td>
</tr>
<tr>
<td>Peat</td>
<td>20</td>
<td>43.70</td>
<td>6.48</td>
</tr>
</tbody>
</table>

Analysis of liquid fuels

<table>
<thead>
<tr>
<th>Fuel</th>
<th>%mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Petrol (gasoline)</td>
<td></td>
</tr>
<tr>
<td>s.g. 0.713</td>
<td>84.3</td>
</tr>
<tr>
<td>s.g. 0.739</td>
<td>84.9</td>
</tr>
<tr>
<td>Benzole</td>
<td>91.7</td>
</tr>
<tr>
<td>Kerosene (paraffin)</td>
<td>86.3</td>
</tr>
<tr>
<td>DERV (diesel engine road vehicle fuel)</td>
<td>86.3</td>
</tr>
<tr>
<td>Diesel oil</td>
<td>86.3</td>
</tr>
<tr>
<td>Light fuel oil</td>
<td>86.2</td>
</tr>
<tr>
<td>Heavy fuel oil</td>
<td>86.1</td>
</tr>
<tr>
<td>Residual fuel oil</td>
<td>88.3</td>
</tr>
</tbody>
</table>

Analysis of gaseous fuels

<table>
<thead>
<tr>
<th>Fuel</th>
<th>%volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H₂</td>
</tr>
<tr>
<td>Coal gas</td>
<td>53.6</td>
</tr>
<tr>
<td>Producer gas</td>
<td>12.0</td>
</tr>
<tr>
<td>Natural gas</td>
<td>0.0</td>
</tr>
<tr>
<td>Blast-furnace gas</td>
<td>2.0</td>
</tr>
</tbody>
</table>
4.1 Hydrostatics

4.1.1 Buoyancy

The 'apparent weight' of a submerged body is less than its weight in air or, more strictly, a vacuum. It can be shown that it appears to weigh the same as an identical volume having a density equal to the difference in densities between the body and the liquid in which it is immersed. For a partially immersed body the weight of the displaced liquid is equal to the weight of the body.

4.1.2 Archimedes principle

\[W' = W - \rho_L V \]

Submerged body

Let:
- \(W \) = weight of body
- \(V = \) volume of body = \(\frac{W}{\rho_B} \)
- \(\rho_B \) = density of body
- \(\rho_L \) = density of liquid
- Apparent weight \(W' = W - \rho_L V \)
- Then: \(W' = V(\rho_B - \rho_L) \)

Floating body

Let:
- \(V_B \) = volume of body
- \(V_S \) = volume submerged

Weight of liquid displaced = Weight of body

\[\rho_L V_S = \rho_B V_B \]

Therefore:

\[V_S = V_B \frac{\rho_B}{\rho_L} \quad \text{or} \quad \frac{V_S}{V_B} = \frac{\rho_B}{\rho_L} \]

4.1.3 Pressure of liquids

The pressure in a liquid under gravity increases uniformly with depth and is proportional to the depth and density of the liquid. The pressure in a cylinder is equal to the force on the piston divided by the area of the piston.

The larger piston of a hydraulic jack exerts a force greater than that applied to the small cylinder in the ratio of the areas. An additional increase in force is due to the handle/lever ratio.

4.1.4 Pressure in liquids

Gravity pressure \(p = \rho gh \)

where: \(\rho \) = fluid density, \(h \) = depth.

Units are: newtons per square metre (N m\(^{-2}\)) or pascals (Pa); \(10^5 \text{ N m}^{-2} = 10^5 \text{ Pa} = 1 \text{ bar} = 1000 \text{ milli-bars} \) (mbar).

Pressure in cylinder \(p = \frac{F}{A} \)

where: \(F = \) force on piston, \(A = \) piston area.
Hydraulic jack

A relatively small force F_h on the handle produces a pressure in a small-diameter cylinder which acts on a large-diameter cylinder to lift a large load W:

Pressure $p = \frac{4F}{\pi d^2} = \frac{4W}{\pi D^2}$, where $F = F_h \frac{a}{b}$

Load raised $W = F \frac{D^2}{d^2} = F_h \frac{a D^2}{b \, d^2}$

Force on plate $F = \rho g x A$

Depth of centre of pressure $h = x + \frac{l}{A_x}$

$h = x + \frac{l \sin^2 \theta}{A_x}$ (for the inclined plate)

Symbols used:
ρ = density of liquid
A = plate area
x = depth of centroid
l = second moment of area of plate about a horizontal axis through the centroid
θ = angle of inclined plate to the horizontal

4.1.5 Pressure on a submerged plate

The force on a submerged plate is equal to the pressure at the depth of its centroid multiplied by its area. The point at which the force acts is called the 'centre of pressure' and is at a greater depth than the centroid. A formula is also given for an angled plate.
4.2 Flow of liquids in pipes and ducts

The Bernoulli equation states that for a fluid flowing in a pipe or duct the total energy, relative to a height datum, is constant if there is no loss due to friction. The formula can be given in terms of energy, pressure or 'head'.

4.2.1 Bernoulli equation

Symbols used:
- \(p \) = pressure
- \(\rho \) = density
- \(h \) = height above datum
- \(V \) = velocity
- \(A \) = area

For an incompressible fluid \(\rho \) is constant, also the energy at 1 is the same as at 2, i.e.

\[
E_1 = E_2
\]

or

\[
p_1 + \rho V_1^2/2 + \rho gh_1 = p_2 + \rho V_2^2/2 + \rho gh_2 + \text{Energy loss (per kilogram)}
\]

In terms of pressure:

\[
p_1 + \rho V_1^2/2 + \rho gh_1 = p_2 + \rho V_2^2/2 + \rho gh_2 + \text{Pressure losses}
\]

In terms of 'head':

\[
p_1/\rho g + V_1^2/2g + h_1 = p_2/\rho g + V_2^2/2g + h_2 + \text{Head losses}
\]

Velocity pressure \(p_v = \rho V^2/2 \)

Velocity head \(h_v = V^2/2g \)

Pressure head \(h_p = p/\rho g \)

4.2.2 Continuity equation

If no fluid is gained or lost in a conduit:

Mass flow \(\dot{m} = \rho_1 A_1 V_1 = \rho_2 A_2 V_2 \)

The 'continuity equation' is given as are expressions for the Reynold's number, a non-dimensional quantity expressing the fluid velocity in terms of the size of pipe, etc., and the fluid density and viscosity.

4.2.3 Reynold's number (non-dimensional velocity)

In the use of models, similarity is obtained, as far as fluid friction is concerned, when:

\[
Re = \frac{V D}{\mu} = \frac{V D}{v}
\]

is the same for the model and the full scale version.

For a circular pipe:

\[D = \text{diameter} \]
\[\mu = \text{dynamic viscosity} \]
\[v = \text{kinematic viscosity} \]

For a non-circular duct:

\[D = \text{equivalent diameter} = \frac{4 \times \text{Area}}{P} = \frac{4A}{P} \]

Types of flow

In a circular pipe the flow is 'laminar' below \(Re \approx 2000 \) and 'turbulent' above about \(Re = 2500 \). Between these values the flow is termed 'transitional'.

\[
\dot{m}
\]

\[
V
\]

\[
A
\]

\[
p_v
\]
4.2.4 Friction in pipes

The formula is given for the pressure loss in a pipe due to friction on the wall for turbulent flow. The friction factor f depends on both Reynold's number and the surface roughness k, values of which are given for different materials. In the laminar-flow region, the friction factor is given by $f = 16/Re$, which is derived from the formula for laminar flow in a circular pipe. This is independant of the surface roughness.

For non-circular pipes and ducts an equivalent diameter (equal to 4 times the area divided by the perimeter) is used.

Let:
$L =$ length (m)
$D =$ diameter (m)
$V =$ velocity (m s$^{-1}$)
$\rho =$ density (kg m$^{-3}$)

Pressure loss in a pipe $p_f = 4f \frac{L}{D} \rho \frac{V^2}{2}$ (N m$^{-2}$)

Friction factor f This depends on the Reynold's number

$Re = \frac{\rho V D}{\mu}$

and the relative roughness k/D (for values of k, see table).

For non-circular pipes, use the equivalent diameter

$D_e = \frac{4 \times \text{Area}}{\text{Perimeter}} = \frac{4A}{P}$

Example

For a water velocity of 0.5 m s$^{-1}$ in a 50 mm bore pipe of roughness $k = 0.1$ mm, find the pressure loss per metre (viscosity = 0.001 N s m$^{-2}$ and $\rho = 1000$ kg m$^{-3}$ for water).
Reynold's number $Re = \frac{1000 \times 0.5 \times 0.05}{0.001} = 2.5 \times 10^4$

Relative roughness $k/D = \frac{0.1}{50} = 0.002$

Friction factor (from chart) $f = 0.0073$

Pressure loss

$$p_l = 4 \times 0.0073 \times \frac{1}{0.05} \times \frac{1000 \times 0.5^2}{2} = 73 \text{ N m}^{-2}$$

Laminar (viscous) flow

For circular pipes only, the friction factor $f = 16/Re$. This value is independent of roughness.

Typical roughness of pipes

<table>
<thead>
<tr>
<th>Material of pipe (new)</th>
<th>Roughness, k (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass, drawn brass, copper, lead, aluminium, etc.</td>
<td>‘Smooth’ ($k = 0$)</td>
</tr>
<tr>
<td>Wrought iron, steel</td>
<td>0.05</td>
</tr>
<tr>
<td>Asphalted cast iron</td>
<td>0.12</td>
</tr>
<tr>
<td>Galvanized iron, steel</td>
<td>0.15</td>
</tr>
<tr>
<td>Cast iron</td>
<td>0.25</td>
</tr>
<tr>
<td>Wood stave</td>
<td>0.2–1.0</td>
</tr>
<tr>
<td>Concrete</td>
<td>0.3–3.0</td>
</tr>
<tr>
<td>Riveted steel</td>
<td>1.0–10</td>
</tr>
</tbody>
</table>

4.2.5 Pipes in series and parallel

The mass flow rate is the same in all pipes, i.e. $m = m_1 = m_2 = \ldots$

where: $m_1 = \rho A_1 V_1$, etc. kg s$^{-1}$

Pipes in parallel

The pressure loss is the same in all pipes:

Pressure loss $p_l = p_{l1} = p_{l2} = \ldots$

The total flow is the sum of the flow in each pipe:

Total flow $m = m_1 + m_2 + \ldots$

where: $p_{l1} = 4f_1 \frac{L_1}{D_1} \rho \frac{V_1^2}{2}$, $p_{l2} = 4f_2 \frac{L_2}{D_2} \rho \frac{V_2^2}{2}$, etc.

4.2.6 Pressure loss in pipe fittings and pipe section changes

In addition to pipe friction loss, there are losses due to changes in pipe cross-section and also due to fittings such as valves and filters. These losses are given in terms of velocity pressure $\rho (V^2/2)$ and a constant called the ‘K factor’.

Sudden enlargement

Pressure loss $p_L = K \rho \frac{V^2}{2}$, where $K = \left(1 - \frac{A_1}{A_2}\right)^2$
Sudden exit

Pressure loss $p_L = \rho \frac{V^2}{2}$, $(K = 1)$

![Diagram of Sudden exit](image)

Sudden contraction

Pressure loss $p_L = K \rho \frac{V^2}{2}$

![Diagram of Sudden contraction](image)

\[
\frac{d_2}{d_1} \quad 0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0
\]

\[
K \quad 0.5 \quad 0.45 \quad 0.38 \quad 0.28 \quad 0.14 \quad 0
\]

Sudden entry

Pressure loss $p_L = K \rho \frac{V^2}{2}$, where $K \approx 0.5$

![Diagram of Sudden entry](image)

Losses in valves

- Globe valve wide open $K = 10$
- Gate valve wide open $K = 0.2$
- Gate valve three-quarters open $K = 1.15$
- Gate valve half open $K = 5.6$
- Gate valve quarter open $K = 24$

Rounded entry

$K \approx 0.05$

![Diagram of Rounded entry](image)

Re-entrant pipe

$K = 0.8-1.0$

![Diagram of Re-entrant pipe](image)

Bends

The factor K depends on R/D, the angle of bend θ, and the cross-sectional area and the Reynolds number. Data are given for a circular pipe with 90° bend. The loss factor takes into account the loss due to the pipe length.

<table>
<thead>
<tr>
<th>R/D</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1.0</td>
<td>0.4</td>
<td>0.2</td>
<td>0.18</td>
<td>0.2</td>
<td>0.27</td>
<td>0.33</td>
<td>0.4</td>
</tr>
</tbody>
</table>
4.3 Flow of liquids through various devices

Flow in channels depends on the cross-section, the slope and the type of surface of the channel.

4.3.1 Orifices

Let:
- $C_d =$ coefficient of discharge
- $C_v =$ coefficient of velocity
- $C_s =$ coefficient of contraction
- $H =$ head
- $A =$ orifice area
- $A_j =$ jet area

$$ Q = C_d A \sqrt{2gH}; \quad C_d = C_v C_s; \quad C_v = \frac{A}{A_j}; \quad C_s = \frac{V}{\sqrt{2gH}} $$
Values of C_d

<table>
<thead>
<tr>
<th>Orifice type</th>
<th>C_d</th>
<th>Arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Rounded entry</td>
<td>Nearly 1.0</td>
<td></td>
</tr>
<tr>
<td>b) Sharp edged</td>
<td>0.61–0.64</td>
<td></td>
</tr>
<tr>
<td>c) Borda re-entrant</td>
<td>About 0.72</td>
<td></td>
</tr>
<tr>
<td>(running full)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) External mouthpiece</td>
<td>About 0.86</td>
<td></td>
</tr>
</tbody>
</table>

4.3.2 Weirs, vee notch and channels

Unsuppressed weir

Flow $Q = 2.95 C_d (b - 0.2H) H^{1.5}$

Suppressed weir

Flow $Q = 3.33 b H^{1.5}$

Vee notch

Flow $Q = 2.36 C_d \tan \frac{\theta}{2} H^{2.5}$

where $C_d =$ discharge coefficient
Channels

Symbols used:

\(m \) = hydraulic mean radius = \(A/P \)
\(i \) = slope of channel
\(C \) = constant = \(87/\left[1 + \left(K/\sqrt{m} \right) \right] \)
\(A \) = flow area
\(P \) = wetted perimeter

Mean velocity \(V = C \sqrt{mi} \)

Flow rate \(Q = VA \)

Values of \(K \)

<table>
<thead>
<tr>
<th>Surface</th>
<th>(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean smooth wood, brick, stone</td>
<td>0.16</td>
</tr>
<tr>
<td>Dirty wood, brick, stone</td>
<td>0.28</td>
</tr>
<tr>
<td>Natural earth</td>
<td>1.30</td>
</tr>
</tbody>
</table>

Maximum discharge for given excavation

<table>
<thead>
<tr>
<th>Channel</th>
<th>Condition</th>
<th>Arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular</td>
<td>(d = h/2)</td>
<td></td>
</tr>
<tr>
<td>Trapezoidal</td>
<td>Sides tangential to semicircle</td>
<td></td>
</tr>
</tbody>
</table>

4.3.3 Venturi, orifice and pipe nozzle

These are used for measuring the flow of liquids and gases. In all three the restriction of flow creates a pressure difference which is measured to give an indication of the flow rate. The flow is always proportional to the square root of the pressure difference so that these two factors are non-linearly related. The venturi gives the least overall pressure loss (this is often important), but is much more expensive to make than the orifice which has a much greater loss. A good compromise is the pipe nozzle. The pressure difference may be measured by means of a manometer (as shown) or any other differential pressure device.

The formula for flow rate is the same for each type.

Let:

\(D \) = pipe diameter
\(d \) = throat diameter
\(\rho \) = fluid density
\(\rho_m \) = density of manometer fluid
\(p_i \) = upstream pressure
\(p \) = throat pressure
\(C_d \) = coefficient of discharge
\(h \) = manometer reading

Flow rate \(Q = C_d \frac{\pi d^2}{4} \sqrt{\frac{2(p_i - p)}{\rho}} \)

Approach factor \(E = \frac{1}{\sqrt{1 - \left(\frac{d}{D} \right)^4}} \)

\((p_i - p_2) = (\rho_m - \rho)gh\)
4.4 Viscosity and laminar flow

4.4.1 Viscosity

In fluids there is cohesion and interaction between molecules which results in a shear force between adjacent layers moving at different velocities and between a moving fluid and a fixed wall. This results in friction and loss of energy.

The following theory applies to so-called 'laminar' or 'viscous' flow associated with low velocity and high viscosity, i.e. where the Reynold's number is low.

Definition of viscosity

In laminar flow the shear stress between adjacent layers parallel to the direction of flow is proportional to the velocity gradient.

Let:
\(V \) = velocity
\(y \) = distance normal to flow
\(\mu \) = dynamic viscosity

Shear stress \(\tau = \text{constant} \cdot \frac{dV}{dy} = \mu \frac{dV}{dy} \)

<table>
<thead>
<tr>
<th>Values of (C_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_d)</td>
</tr>
<tr>
<td>Venturi</td>
</tr>
<tr>
<td>Orifice plate</td>
</tr>
<tr>
<td>Nozzle</td>
</tr>
</tbody>
</table>

Flat plate moving over fixed plate of area \(A \)

Force to move plate \(F = \tau A = \mu A \frac{V}{y} \)
Kinematic viscosity

Kinematic viscosity = \frac{\text{Dynamic viscosity}}{\text{Density}}

or \(v = \frac{\mu}{\rho} \)

Dimensions of viscosity

Dynamic viscosity: ML^{-1} T^{-1}
Kinematic viscosity: L^2 T^{-1}

Units with conversions from Imperial and other units

<table>
<thead>
<tr>
<th>Dynamic viscosity</th>
<th>Kinematic viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI unit: Ns m^{-2}</td>
<td>SI unit: m^2 s^{-1}</td>
</tr>
<tr>
<td>11bf s ft^{-2} = 47.9 N s m^{-2}</td>
<td>1 ft^2 s^{-1} = 0.0929 m^2 s^{-1}</td>
</tr>
<tr>
<td>1 lbf-ft^{-2} = 17.24 N s m^{-2}</td>
<td>1 ft^2 h^{-1} = 334 m^2 s^{-1}</td>
</tr>
<tr>
<td>1 poundal-ft^{-2}</td>
<td>1.49 N s m^{-2}</td>
</tr>
<tr>
<td>1 lbf s ft^{-2}</td>
<td>1.49 kg ms^{-1}</td>
</tr>
<tr>
<td>1 slug-ft' s'</td>
<td>47.9 kg m s^{-1}</td>
</tr>
</tbody>
</table>

Viscosity of water

Approximate values at room temperature:
\(\mu = 10^{-3} \text{ N s m}^{-2} \)
\(v = 10^{-6} \text{ m}^2 \text{ s}^{-1} \)

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Dynamic viscosity ((x 10^{-3} \text{ N s m}^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1.755</td>
</tr>
<tr>
<td>20</td>
<td>1.002</td>
</tr>
<tr>
<td>40</td>
<td>0.651</td>
</tr>
<tr>
<td>60</td>
<td>0.462</td>
</tr>
<tr>
<td>80</td>
<td>0.350</td>
</tr>
<tr>
<td>100</td>
<td>0.278</td>
</tr>
</tbody>
</table>

4.4.2 Laminar flow in circular pipes

The flow is directly proportional to the pressure drop for any shape of pipe or duct. The velocity distribution

in a circular pipe is parabolic, being a maximum at the pipe centre.

Velocity distribution

Flow \(Q = \pi \frac{(p_1 - p_2)r^4}{8\mu L} \)

Mean velocity \(V = \frac{(p_1 - p_2)r^2}{8\mu L} \)

Maximum velocity \(V_m = 2V \)

4.4.3 Laminar flow between flat plates

Flow \(Q = \frac{(p_1 - p_2)Bl^3}{12\mu L} \)

Mean velocity \(V = \frac{(p_1 - p_2)l^2}{12\mu L} \)

Maximum velocity \(V_m = \frac{3}{2}V \)
4.4.4 Flow through annulus (small gap)

Mean velocity \(V = \frac{Q}{\pi (R^2 - r^2)} \)

Use formula for flat plates but with \(B = \pi D_m \), where \(D_m \) is the mean diameter.

Flow through annulus (exact formula)

\[
Q = \frac{\pi}{8uL} (p_1 - p_2) (R^2 - r^2) \left[(R^2 + r^2) - \frac{(R^2 - r^2)}{\ln \frac{R}{r}} \right]
\]

4.5 Fluid jets

If the velocity or direction of a jet of fluid is changed, there is a force on the device causing the change which is proportional to the mass flow rate. Examples are of jets striking both fixed and moving plates.

Change of momentum of a fluid stream

Let:
- \(\dot{m} \) = mass flow rate = \(\rho AV \)
- \(V_i \) = initial velocity
- \(V_f \) = final velocity
- \(\rho \) = fluid density
- \(A \) = flow area

For flow in one direction, the force on a plate, etc., causing a velocity change is

\(F = \dot{m}(V_1 - V_2) \)

4.5.1 Jet on stationary plates

Jet on a flat plate

In this case \(V_f = 0 \), and if \(V_i = V \)

\(F = \dot{m}V = \rho AV^2 \) in direction of \(V_i \)

Jet on an angled plate

\(F \) is directed at an angle \(\theta \) from the direction of \(V \), where \(\theta < 90^\circ \)

Angled plate, \(\theta < 90^\circ \)
Jet on angled plate

\[F = \rho A V^2 (1 - \cos \theta) \] in direction of \(V \)

For \(\theta = 90^\circ \), \(F = \rho A V^2 \)

For \(\theta = 180^\circ \), \(F = 2\rho A V^2 \).

Jet on moving plates

Jet on a flat plate

\[F = \rho A V (V - U) \]

where: \(U = \) plate velocity.

Power \(P = F U = \rho A V U (V - U) \)

\[= \rho A V^2 r (1 - r) \]

where: \(r = \frac{U}{V} \).

Jet on angled plate

\[F = \rho A V (V - U) (1 - \cos \theta) \] in direction of \(V \)

\[P = \rho A V^2 r (1 - r) (1 - \cos \theta) \rho \]

Example

If \(r = \frac{U}{V} = 0.4 \), \(\theta = 170^\circ \), \(V = 10 \text{ m s}^{-1} \), \(A = 4 \text{ cm}^2 = 4 \times 10^{-4} \text{ m}^2 \) and \(\rho = 1000 \text{ kg m}^{-3} \). Then \(P = 1000 \times 4 \times 10^{-4} \times 10^3 \times 0.4(1 - 0.4)(1 - \cos 170^\circ) = 190.5 \text{ watts} \)

Jet on fixed curved vane

In the \(x \) direction: \(F_x = \rho A V^2(\cos \theta_1 + \cos \theta_2) \)

In the \(y \) direction: \(F_y = \rho A V^2(\sin \theta_1 - \sin \theta_2) \)

Jet on moving curved vane

\[F_x = \dot{m} V \left(\cos \alpha + \frac{\sin \alpha \cos \theta_2}{\sin \theta_1} - r \right) \]

where: \(r = \frac{U}{V} \).
occurs when the boat speed is half the jet speed and maximum power is attained. When the water enters the front of the boat, maximum efficiency occurs when the boat speed equals the jet speed, that is, when the power is zero. A compromise must therefore be made between power and efficiency.

Let:

\[V = \text{jet velocity relative to boat} \]
\[U = \text{boat velocity} \]
\[r = \frac{U}{V} \]
\[\dot{m} = \text{mass flow rate of jet} \]

Water enters side of boat

Thrust \(F = \dot{m} V (1 - r) \)

Pump power \(P = \dot{m} \frac{V^2}{2} \)

Efficiency \(\eta = 2r (1 - r) \); \(\eta_{\text{max}} = 0.5 \), at \(r = 0.5 \).

Water enters front of boat

Thrust \(F = \dot{m} V (1 - r) \)

Pump power \(P = \dot{m} \frac{(V^2 - U^2)}{2} = \dot{m} \frac{V^2}{2} (1 - r^2) \)

Efficiency \(\eta = \frac{2r}{(1 + r)} \)

\(\eta = 0.667 \), for \(r = 0.5 \).
\(\eta = 1.0 \), for \(r = 1.0 \).

Output power (both cases)

\[P_o = \dot{m} V^2 r (1 - r) \]
4.5.4 Aircraft jet engine

Let:

- \(V \) = jet velocity relative to aircraft
- \(U \) = aircraft velocity
- \(\dot{m} \) = mass flow rate of air
- \(\dot{m}_f \) = mass flow rate of fuel

Thrust \(T = \dot{m}U - (\dot{m} + \dot{m}_f)V \)

Output power \(P = TU = \dot{m}U^2 - (\dot{m} + \dot{m}_f)UV \)

\(P_{\text{max}} = \dot{m} \frac{V^2}{4} \), at \(r = 0.5 \).

4.6 Flow of gases

Formulae are given for the compressible flow of a gas. They include isothermal flow with friction in a uniform pipe and flow through orifices. The velocity of sound in a gas is defined.

Symbols used:
- \(p \) = pressure
- \(L \) = pipe length
- \(D \) = pipe diameter
- \(T \) = temperature
- \(C_d \) = discharge coefficient
- \(V_1 \) = inlet velocity
- \(R \) = gas constant
- \(\dot{m} \) = mass flow
- \(f \) = friction coefficient
- \(\gamma \) = ratio of specific heats
- \(\rho \) = density
4.6.1 Isothermal flow in pipe

Pressure drop:

$$\Delta p = p_1 \left(1 - \sqrt{1 - \frac{8fLV_1^2}{2gDRT}}\right)$$

Mass flow $\dot{m} = \rho_1 V_1 \pi \frac{D^2}{4}$

where: $\rho_1 = \frac{p_1}{RT}$.

4.6.2 Flow through orifice

Mass flow $\dot{m} = C_d A \sqrt{2g \left(\frac{\gamma}{\gamma - 1}\right)} p_1 \rho_1 n^2 \left(1 - n \frac{L}{V}\right)$

where: $n = p_2/p_1$; $\rho_1 = p_1/RT$;

Maximum flow when $n = \left[\frac{2}{\gamma + 1}\right]^{\frac{\gamma}{\gamma - 1}} = 0.528$ for air.

4.6.3 Velocity of sound in a gas

$$V_s = \sqrt{\gamma p_0/\rho} = \sqrt{\gamma RT}$$

Mach number $M = \frac{V}{V_s}$

4.6.4 Drag coefficients for various bodies

The drag coefficient (non-dimensional drag) is equal to the drag force divided by the product of velocity pressure and frontal area. The velocity may be that of the object through the air (or any other gas) or the air velocity past a stationary object. Coefficients are given for a number of geometrical shapes and also for cars, airships and struts.

Drag coefficients for various bodies

$$\text{Drag } D = C_d A \rho \frac{V^2}{2}$$; $\rho =$ fluid density; $A =$ frontal area; $V =$ fluid velocity.

<table>
<thead>
<tr>
<th>Shape</th>
<th>L/d</th>
<th>C_d</th>
<th>$R_e/10^4$</th>
<th>A</th>
<th>Arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular flat plate</td>
<td>1.12</td>
<td>100</td>
<td>$\frac{\pi d^2}{4}$</td>
<td>$\frac{\pi d^2}{4}$</td>
<td></td>
</tr>
</tbody>
</table>
Drag coefficients for various bodies *(continued)*

<table>
<thead>
<tr>
<th>Shape</th>
<th>$\frac{L}{d}$</th>
<th>C_d</th>
<th>$\frac{R_s}{10^4}$</th>
<th>A</th>
<th>Arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular flat plate</td>
<td>1</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.20</td>
<td>60</td>
<td>Ld</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>∞</td>
<td>1.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long semicircular concave surface</td>
<td>2.30</td>
<td>2.00</td>
<td></td>
<td>0.1</td>
<td>Ld</td>
</tr>
<tr>
<td>Long semicircular convex surface</td>
<td>1.20</td>
<td>1.00</td>
<td></td>
<td>0.1</td>
<td>Ld</td>
</tr>
<tr>
<td>Long circular cylinder</td>
<td>1.00</td>
<td>0.35</td>
<td></td>
<td><20</td>
<td>Ld</td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>1.00</td>
<td></td>
<td>>20</td>
<td>Ld</td>
</tr>
<tr>
<td>Long square section flow on face</td>
<td>2.00</td>
<td>2.00</td>
<td></td>
<td>0.1</td>
<td>Ld</td>
</tr>
<tr>
<td>Long square section flow on edge</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td>0.1</td>
<td>$\sqrt{2}Ld$</td>
</tr>
</tbody>
</table>
Drag coefficients for various bodies (continued)

<table>
<thead>
<tr>
<th>Shape</th>
<th>(\frac{L}{d})</th>
<th>(C_d)</th>
<th>(\frac{R_e}{10^4})</th>
<th>(A)</th>
<th>Arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Cube flow on face</td>
<td>1.05</td>
<td></td>
<td>100</td>
<td>(d^2)</td>
<td>(a)</td>
</tr>
<tr>
<td>(b) Cube flow on edge</td>
<td>0.80</td>
<td></td>
<td>100</td>
<td>(\sqrt{2}d^2)</td>
<td>(b)</td>
</tr>
<tr>
<td>Sphere</td>
<td>0.45</td>
<td></td>
<td>< 20</td>
<td>(\pi d^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td></td>
<td>> 20</td>
<td>(\frac{\pi d^2}{4})</td>
<td></td>
</tr>
<tr>
<td>Long elliptical section</td>
<td>8</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.46</td>
<td>10</td>
<td>(Ld)</td>
<td></td>
</tr>
</tbody>
</table>
Drag coefficients for various bodies (continued)

<table>
<thead>
<tr>
<th>Shape</th>
<th>(\frac{L}{d})</th>
<th>(C_d)</th>
<th>(\frac{R_e}{10^4})</th>
<th>(A)</th>
<th>Arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long symmetrical aerofoil</td>
<td>16</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.007</td>
<td>800</td>
<td></td>
<td>(Ld)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellipsoid</td>
<td>5</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.07</td>
<td>100</td>
<td></td>
<td>(\frac{\pi d^2}{4})</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streamlined body of circular</td>
<td>3</td>
<td>0.049</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cross-section</td>
<td>4</td>
<td>0.051</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.060</td>
<td>500</td>
<td></td>
<td>(\frac{\pi d^2}{4})</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.072</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid hemisphere flow on</td>
<td>0.38</td>
<td>0.1</td>
<td>(\frac{\pi d^2}{4})</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>convex face</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid hemisphere flow on</td>
<td>1.17</td>
<td>0.1</td>
<td>(\frac{\pi d^2}{4})</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>on flat face</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Drag coefficients for various bodies (continued)

<table>
<thead>
<tr>
<th>Shape</th>
<th>L/d</th>
<th>C_d</th>
<th>$Re/10^4$</th>
<th>A</th>
<th>Arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hollow hemisphere flow on convex face</td>
<td>0.80</td>
<td>0.1</td>
<td>$\pi d^2/4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hollow hemisphere flow on concave face</td>
<td>1.42</td>
<td>0.1</td>
<td>$\pi d^2/4$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) High-drag car
(b) Medium-drag car
(c) Low-drag car

4.7 Fluid machines

4.7.1 Centrifugal pump

A centrifugal pump consists of an impeller with vanes rotating in a suitably shaped casing which has an inlet at the centre and usually a spiral 'volute' terminating in an outlet branch of circular cross-section to suit a pipe.

Fluid enters the impeller axially at its centre of rotation through its 'eye' and is discharged from its rim in a spiralling motion having received energy from the rotating impeller. This results in an increase in both pressure and velocity. The kinetic energy is mostly converted to pressure energy in the volute and a tapered section of the discharge branch.
Some pumps have a ring of fixed (diffuser) vanes into which the impeller discharges. These reduce the velocity and convert a proportion of the kinetic energy into pressure energy.

Symbols used:

- $D_1 =$ mean inlet diameter of impeller
- $D_2 =$ outlet diameter of impeller
- $b_1 =$ mean inlet width of impeller
- $b_2 =$ outlet width of impeller
- $t =$ vane thickness at outlet
- $\beta_1 =$ vane inlet angle
- $\beta_2 =$ vane outlet angle
- $N =$ impeller rotational speed
- $Q =$ flow
- $H =$ head
- $Z =$ number of vanes
- $\rho =$ fluid density
- $\rho_1 =$ refers to impeller inlet
- $\rho_2 =$ refers to impeller outlet
- $\rho_3 =$ refers to diffuser outlet
- $P =$ power
- $V_t =$ tangential velocity
- $V_w =$ whirl velocity
- $V_f =$ flow velocity
- $V_r =$ velocity relative to vane
- $V_0 =$ absolute velocity of fluid
- $\eta_h =$ hydraulic efficiency
- $\eta_v =$ volumetric efficiency
- $\eta_m =$ mechanical efficiency
- $\eta_o =$ overall efficiency
- $a =$ diffuser inlet angle
- $d_2 =$ diffuser inlet width
- $d_3 =$ diffuser outlet width
- $b =$ diffuser breadth (constant)
- $a_2 =$ diffuser inlet area $= bd_2$
- $a_3 =$ diffuser outlet area $= bd_3$
- $V_3 =$ diffuser outlet velocity
- $p =$ pressure rise in pump

Head

Referring to velocity triangles

Theoretical head $H_{th} = \frac{(V_{w2}V_{12} - V_{w1}V_{11})}{g}$

It is usually assumed that V_{w1} is zero, i.e. there is no 'whirl' at inlet. The outlet whirl velocity V_{w2} is reduced by a whirl factor K to $KV_{w2}(K < 1)$. Then:

Actual head $H = \frac{KV_{w2}V_{12}\eta_h}{g}$

where $\eta_h =$ hydraulic efficiency. Or:

Pressure rise $p = \rho K V_{w2} V_{12}\eta_h$

Flow $Q = V_{f1} A_1 = V_{f2} A_2$

$= \pi D_1 b_1 V_{f1}\eta_v$

$= \pi b_2 \left(D_2 - \frac{Zt}{\sin\beta_2}\right) V_{f2}\eta_v$

where $\eta_v =$ volumetric efficiency

Velocity relationships

$V_{11} = \pi D_1 N_1$; $V_{12} = \pi D_2 N_2$

$V_{f1} = V_{11} \tan\beta_1$; $V_2 = \sqrt{V_{w2}^2 + V_{12}^2}$

$V_{w2} = V_{12} - V_{12} \cot\beta_2$
Power and efficiency

Overall efficiency \(\eta_s = \eta_w \eta_r \eta_h \)

Input power \(P = \frac{\rho g HQ}{\eta_o} \)

Inlet angles

Diffuser (fixed vanes):

Inlet angle \(\alpha = \tan^{-1} \frac{V_{f2}}{V_{w2}} \)

Outlet velocity \(V_3 = V_2 \frac{a_2}{a_3} \)

Vane:

Inlet angle \(\beta_1 = \tan^{-1} \frac{V_{i1}}{V_{i2}} \) (assuming no whirl)

Pump volute

Velocity in volute \(V_e = \frac{Q}{A_4} \)

where: \(A_4 = \) maximum area. Then:

\(A_1 = \frac{A_4}{4}; A_2 = \frac{A_4}{2}; A_3 = \frac{3A_4}{4} \)

Pump outlet velocity \(V_0 = V_e \frac{A_4}{A_o} \)

where: \(A_o = \) outlet area.

Pressure head at outlet \(H_o = H - \frac{V_o^2}{2g} - K_s \frac{V_x^2}{2g} \)

where: \(K_s = \) diffuser and volute discharge coefficient.

Static and total efficiencies

Static head = \(H_o \) \hspace{1cm} Total head \(H_1 = H_o + \frac{V_o^2}{2g} \)

Static pressure = \(p_o = \rho g H_o \) \hspace{1cm} Total pressure = \(p_1 = \rho g H_1 \)

Static efficiency = \(\eta_s = \frac{p_o Q}{P} \) \hspace{1cm} Total efficiency = \(\eta_t = \frac{p_1 Q}{P} \)

4.7.2 Pump characteristics

Pump characteristics are plotted to a base of flow rate for a fixed pump speed. Head (or pressure), power and efficiency are plotted for different speeds to give a family of curves. For a given speed the point at which maximum efficiency is attained is called the 'best efficiency point' (B.E.P.). If the curves are plotted non-dimensionally a single curve is obtained which is also the same for all geometrically similar pumps.
Head \((H)\), power \((P)\) and efficiency \((\eta)\) are plotted against flow at various speeds \((N)\) and the B.E.P. can be determined from these.

Symbols used:
- \(\rho\) = fluid density
- \(p_a\) = atmospheric pressure
- \(p_v\) = vapour pressure of liquid at working temperature
- \(V_s\) = suction pipe velocity
- \(h_t\) = friction head loss in suction pipe plus any other losses
- \(H_p\) = pump head
- \(\sigma_c\) = cavitation constant which depends on vane design and specific speed

Minimum safe suction head
\[
H_{\text{min}} = \frac{p_a}{\rho g} - \left(\sigma_c H_p + \frac{V_s^2}{2g} + h_t + p_v/\rho g\right)
\]

Non-dimensional characteristics

To give single curves for any speed the following non-dimensional quantities, (parameters) are plotted (see figure):

Head parameter \(X_h = gH/N^2D^2\)
Flow parameter \(X_f = Q/ND^3\)
Power parameter \(X_p = P/\rho N^3D^5\)

Range of \(\sigma_c\):
- Safe region \(\sigma_c > 0.0005N_s^{1.37}\), where \(N_s\) = specific speed.
- Dangerous region \(\sigma_c < 0.00022N_s^{1.33}\)
A 'doubtful zone' exists between the two values.

4.7.4 Centrifugal fans

The theory for centrifugal fans is basically the same as that for centrifugal pumps but there are differences in construction since fans are used for gases and pumps for liquids. They are usually constructed from sheet metal and efficiency is sacrificed for simplicity. The three types are: the radial blade fan (paddle wheel fan); the backward-curved vane fan, which is similar in design to the centrifugal pump; and the forward-curved vane fan which has a wide impeller and a large number of vanes. Typical proportions for impellers, maximum efficiencies and static pressures are given together with the outlet-velocity diagram for the impeller.
Centrifugal Fan Types

<table>
<thead>
<tr>
<th>Type and Application</th>
<th>Arrangement</th>
<th>b/D</th>
<th>Max. Efficiency (%)</th>
<th>No. of Vanes</th>
<th>Static Pressure (cm H$_2$O)</th>
<th>Velocity Triangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial Vanes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(paddle wheel),</td>
<td></td>
<td>0.35-0.45</td>
<td>60-70</td>
<td>6-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mill exhaust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backward-Curved Vanes</td>
<td></td>
<td>0.25-0.45</td>
<td>75-90</td>
<td>8-12</td>
<td>12-15</td>
<td></td>
</tr>
<tr>
<td>Air Conditioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward-Curved Vanes</td>
<td></td>
<td>0.50-0.60</td>
<td>55-60</td>
<td>16-20</td>
<td>7-10</td>
<td></td>
</tr>
<tr>
<td>Ventilation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.7.5 Impulse (Pelton) water turbine

This is a water turbine in which the pressure energy of the water is converted wholly to kinetic energy in one or more jets which impinge on buckets disposed around the periphery of a wheel. The jet is almost completely reversed in direction by the buckets and a high efficiency is attained. Formulae are given for the optimum pipe size to give maximum power, and for the jet size for maximum power (one jet).

Symbols used:
- \(\theta \) = bucket angle
- \(H = \) available head
- \(H_{\text{tot}} = \) total head
- \(H_f = \) friction head
- \(D = \) mean diameter of bucket wheel
- \(D_p = \) pipe diameter
- \(d = \) jet diameter
- \(\rho = \) water density
- \(f = \) pipe friction factor
- \(L = \) length of pipe
- \(N = \) wheel speed
- \(C_v = \) jet velocity coefficient
- \(V = \) jet velocity
- \(V_p = \) pipe velocity
- \(\eta_o = \) overall efficiency
- \(\eta_h = \) hydraulic efficiency
- \(\eta_{\text{em}} = \) overall efficiency

Available head \(H = (H_{\text{tot}} - H_f) \)

Shaft power \(P = \rho g H \eta_h \)

Jet velocity \(V = C_v \sqrt{2gH} \)

Mean bucket speed \(U = \pi DN \)

Flow through jet \(Q = \frac{\pi d^2 V}{4} \)

Hydraulic efficiency \(\eta_h = 2r(1 - r)(1 + k \cos \theta) \)

where: \(r = \frac{U}{V} \), \(\theta = \) bucket angle (4–7°),

\(k = \) friction coefficient (about 0.9).

Maximum efficiency (at \(r = 0.5 \)): \(\eta_h(\text{max}) = \frac{(1 + k \cos \theta)}{2} \)

Overall efficiency \(\eta_o = \eta_h\eta_{\text{em}} \)

Maximum power when \(H_f = \frac{H_{\text{tot}}}{3} = \frac{4fLV^2}{2gD_p} \). Hence:

Optimum size of supply pipe \(D_p = \left(\frac{fLQ^2}{H_{\text{tot}}} \right)^{\frac{1}{4}} \)

Jet size for maximum power \(d = \left(\frac{D_p^2}{8fL} \right)^{\frac{1}{4}} \)

4.7.6 Reaction (Francis) water turbine

The head of water is partially converted to kinetic energy in stationary guide vanes and the rest is converted into mechanical energy in the 'runner'. The water first enters a spiral casing or volute and then into the guide vanes and a set of adjustable vanes which are used to control the flow and hence the power. The water then enters the runner and finally leaves via the 'draft tube' at low velocity. The draft tube tapers to reduce the final velocity to a minimum.
Velocity triangles

Radial velocities: \(V_{11} = \frac{Q}{\pi b_1 D_1} \) (inlet)
\(V_{12} = \frac{Q}{\pi b_2 D_2} \) (outlet)

Tangential velocities: \(V_{11} = \pi D_1 N \) (inlet)
\(V_{12} = \pi D_2 N \) (outlet)

Whirl velocities: \(V_{w1} = g H \eta_b / V_{11} \) (inlet, usually)
\(V_{w2} = 0 \) (outlet, usually)

Guide vane velocity: \(V_1 = \sqrt{2gH} \)

Vane and blade angles

Guide vanes: \(\alpha = \tan^{-1} \frac{V_{w1}}{V_{11}} \)
Blade inlet: \(\beta_1 = \tan^{-1} \frac{V_{11}}{V_{11} - V_{w1}} \)
Blade outlet: \(\beta_2 = \tan^{-1} \frac{V_{12}}{V_{12}} \)

Overall efficiency \(\eta_{ov} = \eta_m \eta_h \)
Shaft power = \(\rho g H Q \eta_o \)
Available head \(H = H_{tot} - H_f - V_o^2 / 2g \)
where: \(V_o = \) draft tube outlet velocity.

Specific speed of pumps and turbines

It is useful to compare design parameters and characteristics of fluid machines for different sizes. This is done by introducing the concept of 'specific speed', which is a constant for geometrically similar machines.

4.7.7 Specific speed of pumps and turbines

Symbols used:
- \(N \) = speed of rotation
- \(Q \) = flow
- \(H \) = head
- \(P \) = power

Specific speed of pump \(N_s = \frac{N \sqrt{Q}}{H^3} \)

Specific speed of turbine \(N_s = \frac{N \sqrt{P}}{H^3} \)
5.1 Metal processes

Metals can be processed in a variety of ways. These can be classified roughly into casting, forming and machining.

The following table gives characteristics of different processes for metals, although some may also apply to non-metallic materials such as plastics and composites.

<table>
<thead>
<tr>
<th>Process</th>
<th>Economic quantity</th>
<th>Materials (typical)</th>
<th>Optimum size</th>
<th>Minimum section (mm)</th>
<th>Holes possible</th>
<th>Inserts possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand casting</td>
<td>Small/large</td>
<td>No limit</td>
<td>1–100 kg</td>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Die casting, gravity</td>
<td>Large</td>
<td>Al, Cu, Mg, Zn alloys</td>
<td>1–50 kg</td>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Die casting, pressure</td>
<td>Large</td>
<td>Al, Cu, Mg, Zn alloys</td>
<td>50 g to 5 kg</td>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Centrifugal casting</td>
<td>Large</td>
<td>No limit</td>
<td>30 mm to 1 m diameter</td>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Investment casting</td>
<td>Small/large</td>
<td>No limit</td>
<td>50 g to 50 kg</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Closed die forging</td>
<td>Large</td>
<td>No limit</td>
<td>3000 cm³</td>
<td>3</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hot extrusion</td>
<td>Large</td>
<td>No limit</td>
<td>500 mm diameter</td>
<td>1</td>
<td>—</td>
<td>No</td>
</tr>
<tr>
<td>Hot rolling</td>
<td>Large</td>
<td>No limit</td>
<td>—</td>
<td>—</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Cold rolling</td>
<td>Large</td>
<td>No limit</td>
<td>—</td>
<td>—</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Drawing</td>
<td>Small/large</td>
<td>Al, Cu, Zn, mild steel</td>
<td>3 mm/6 m diameter</td>
<td>0.1</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Spinning</td>
<td>One-off, large</td>
<td>Al, Cu, Zn, mild steel</td>
<td>6 mm/4.5 m diameter</td>
<td>0.1</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Impact extrusion</td>
<td>Large</td>
<td>Al, Pb, Zn, Mg, Sn</td>
<td>6–100 mm diameter</td>
<td>0.1</td>
<td>—</td>
<td>No</td>
</tr>
<tr>
<td>Sintering</td>
<td>Large</td>
<td>Fe, W, bronze</td>
<td>80 g to 4 kg</td>
<td>0.5</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Machining</td>
<td>One-off, large</td>
<td>No limit</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
5.2 Turning

5.2.1 Single point metal cutting

In metal cutting, a wedge-shaped tool is used to remove material from the workpiece in the form of a 'chip'. Two motions are required: the 'primary motion', e.g. the rotation of the workpiece in a lathe; and the 'secondary motion', e.g. the feed of a lathe tool. Single-point tools are used for turning, shaping, planing, etc., and multi-point tools are used for milling, etc. It is necessary to understand the forces acting on the tool and their effects on power requirement, tool life and production cost.

In the following tables of tool forces and formulae specific power consumption, metal removal rate, tool life, etc., are given. A graph shows the tool life plotted against cutting speed for high-speed steel, carbide and ceramic tools.

5.2.2 Cutting tool forces

Tool forces vary with cutting speed, feed rate, depth of cut and rake angle. Force may be measured experimentally by using a 'cutting tool dynamometer' in which the tool is mounted on a flexible steel diaphragm and its deflections in three planes measured by three electrical transducers. Three meters indicate the force, typically of 25 N up to, say, 2000 N. Graphs show typical characteristics.

Symbols used:

- $F_c =$ cutting force (in newtons)
- $F_r =$ radial force (in newtons)
- $F_f =$ feed force (in newtons)

Resultant force on tool in horizontal plane

$$= \sqrt{F_r^2 + F_f^2} \text{ newtons}$$

5.2.3 Cutting power, P

Let:

- $D =$ work diameter (mm)
- $d =$ depth of cut (mm)
- $N =$ number of revolutions per minute

$$P = F_c \frac{V}{60} \text{ (watts)}$$

where:

$$v = \frac{\pi(D - d)N}{1000} \text{ (m min}^{-1})$$

Metal removal rate $Q = \frac{\pi(D - d)d f N}{1000} \text{ (cm}^3 \text{ min}^{-1})$

where: $f =$ feed rate (mm rev$^{-1}$).

Specific power consumption $P_s = \frac{P}{Q} \text{ (watts cm}^{-3} \text{ min}^{-1})$
Typical values of P_s

<table>
<thead>
<tr>
<th>Material</th>
<th>Specific power consumption, P_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain carbon steel</td>
<td>34</td>
</tr>
<tr>
<td>Alloy steel</td>
<td>71</td>
</tr>
<tr>
<td>Cast iron</td>
<td>24</td>
</tr>
<tr>
<td>Aluminium alloy</td>
<td>12</td>
</tr>
<tr>
<td>Brass</td>
<td>25</td>
</tr>
</tbody>
</table>

5.2.4 Tool life, T

$$T = \left(\frac{C}{P_s}\right)^n \text{ (min)}$$

Values of C and n

<table>
<thead>
<tr>
<th>Tool material</th>
<th>C</th>
<th>n</th>
<th>Wear land width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Roughing</td>
</tr>
<tr>
<td>High-speed steel</td>
<td>60–100</td>
<td>0.08–0.15</td>
<td>1.5</td>
</tr>
<tr>
<td>Cemented carbide</td>
<td>200–330</td>
<td>0.16–0.5</td>
<td>0.75</td>
</tr>
<tr>
<td>Ceramic</td>
<td>330–600</td>
<td>0.40–0.6</td>
<td>0.25–0.38</td>
</tr>
</tbody>
</table>

5.2.5 Tool characteristics

Force versus cutting speed

F_c is constant over normal range of cutting speed. F_r increases slowly with cutting speed.

Force versus depth of cut

F_c increases with depth of cut. F_r increases at decreasing rate with depth of cut.

Force versus rake angle

F_c and F_r fall slowly with rake angle.
Force versus feed rate

F_c increases linearly with feed rate.

F_t increases in a curve with decreasing rate.

5.2.6 Cutting speeds

Turning cutting speeds (m min$^{-1}$)

<table>
<thead>
<tr>
<th>Material</th>
<th>High-speed steel</th>
<th>Super-high-speed steel</th>
<th>Stellite</th>
<th>Tungsten carbide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium alloys</td>
<td>70–100</td>
<td>90–120</td>
<td>> 200</td>
<td>> 350</td>
</tr>
<tr>
<td>Brass, free cutting</td>
<td>70–100</td>
<td>90–120</td>
<td>170–250</td>
<td>350–500</td>
</tr>
<tr>
<td>Bronze</td>
<td>40–70</td>
<td>50–80</td>
<td>70–150</td>
<td>150–250</td>
</tr>
<tr>
<td>Grey cast iron</td>
<td>35–50</td>
<td>45–60</td>
<td>60–90</td>
<td>90–120</td>
</tr>
<tr>
<td>Copper</td>
<td>35–70</td>
<td>50–90</td>
<td>70–150</td>
<td>100–300</td>
</tr>
<tr>
<td>Magnesium alloys</td>
<td>85–135</td>
<td>110–150</td>
<td>85–135</td>
<td>85–135</td>
</tr>
<tr>
<td>Mild steel</td>
<td>35–50</td>
<td>45–60</td>
<td>70–120</td>
<td>—</td>
</tr>
<tr>
<td>High tensile steel</td>
<td>5–10</td>
<td>7–12</td>
<td>20–35</td>
<td>—</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>10–15</td>
<td>12–18</td>
<td>30–50</td>
<td>—</td>
</tr>
<tr>
<td>Thermosetting plastic</td>
<td>35–50</td>
<td>45–60</td>
<td>70–120</td>
<td>100–200</td>
</tr>
</tbody>
</table>
5.2.7 **Turning of plastics**

Turning of plastics – depth of cut, feed, and cutting speed

<table>
<thead>
<tr>
<th>Material</th>
<th>Condition</th>
<th>Depth of cut (mm)</th>
<th>Feed (mm rev⁻¹)</th>
<th>Cutting speed (m min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermoplastics, polyethylene,</td>
<td>Extruded, moulded or cast</td>
<td>4</td>
<td>0.25</td>
<td>50</td>
</tr>
<tr>
<td>polypropylene, TFE fluorocarbon</td>
<td></td>
<td></td>
<td></td>
<td>145</td>
</tr>
<tr>
<td>High-impact styrene, modified acrylic</td>
<td>Extruded, moulded or cast</td>
<td>4</td>
<td>0.25</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>Nylon, acetalts and polycarbonate</td>
<td></td>
<td>4</td>
<td>0.25</td>
<td>50</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>Moulded or extruded</td>
<td>4</td>
<td>0.25</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Soft grades of thermosetting plastic</td>
<td>Cast, moulded or filled</td>
<td>4</td>
<td>0.25</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>Hard grades of thermosetting plastic</td>
<td>Cast, moulded or filled</td>
<td>4</td>
<td>0.25</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145</td>
</tr>
</tbody>
</table>

HSS, high-speed steels.

5.2.8 **Typical standard times for capstan and turret lathe operations**

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time (s)</th>
<th>Operation</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change speed</td>
<td>3</td>
<td>Engage feed</td>
<td>1.5</td>
</tr>
<tr>
<td>Change feed</td>
<td>3</td>
<td>Feed to bar stop</td>
<td>3.5</td>
</tr>
<tr>
<td>Index tool post</td>
<td>3.5</td>
<td>Chuck in, 3-jaw chuck</td>
<td>4.5</td>
</tr>
</tbody>
</table>

5.2.9 **Lathe-tool nomenclature and setting**

There are many types of lathe tool, the principal ones being: bar turning; turning and facing; parting-off; facing; boring; and screw cutting. Some are made from a bar of tool steel, others with high-speed steel tips welded to carbon steel shanks and some with tungsten carbide tips brazed to a steel shank. A tool holder with interchangeable tips can also be used.

Tool features

For cutting to take place the tool must have a ‘front clearance angle’ which must not be so large that the tool is weakened. There must also be a ‘top rake angle’ to increase the effectiveness of cutting. The value of this angle depends on the material being cut. Typical values are given in the following table.
Plan approach angle

To reduce the load on the tool for a given depth of cut the cutting edge can be angled to increase its length. Note the direction of chip flow – if the angle is too large there is a danger of chatter.

Other features

In addition to front clearance and top rake, there are side clearance and side rake. A small nose radius improves cutting and reduces wear.

Symbols used:
\[
\begin{align*}
\phi &= \text{top rake angle} \\
\alpha &= \text{front clearance angle} \\
\beta &= \text{wedge angle} \\
\delta &= \text{plan relief or trail angle} \\
\varepsilon &= \text{plan approach angle} \\
\theta &= \text{true rake angle} \\
\gamma &= \text{true wedge angle} \\
\lambda &= \text{side clearance angle} \\
\psi &= \text{side rake angle}.
\end{align*}
\]

Another feature is the 'chip breaker' which breaks long, dangerous and inconvenient streamers of 'swarf' into chips.

<table>
<thead>
<tr>
<th>Workpiece material</th>
<th>Tensile strength (N mm(^{-2}))</th>
<th>Tool rake angle (^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High tensile steel</td>
<td>1550</td>
<td>-8</td>
</tr>
<tr>
<td>Nickel-chrome steel</td>
<td>1000(\text{–}1150)</td>
<td>-5</td>
</tr>
<tr>
<td>Steel</td>
<td>750</td>
<td>-3</td>
</tr>
<tr>
<td>Steel forging</td>
<td>450(\text{–}600)</td>
<td>-2</td>
</tr>
<tr>
<td>Brass and bronze</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Cast iron</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Mild steel</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Free-cutting mild steel</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Light alloys</td>
<td>-</td>
<td>12</td>
</tr>
</tbody>
</table>

Another feature is the 'chip breaker' which breaks long, dangerous and inconvenient streamers of 'swarf' into chips.
Tool setting

The tool must not be set too high or too low, or inclined at an angle. The effects are shown in the figure.

![Tool Setting Diagram]

Above centre: tool tends to rub. Below centre: work tends to climb over tool. Inclined upwards: tool rubs. Inclined downwards: work tends to drag tool in.

5.2.10 Parting-off tool

This is used for 'parting-off' the workpiece from bar stock held in a chuck. Note that there is 'body clearance' on both sides as well as 'side clearance'. The tool is weak and must be used with care. It must be set on or slightly above centre. If set even slightly below centre the work will climb onto the tool before parting-off.

![Parting-off Tool Diagram]

5.3 Drilling and reaming

A twist drill is a manually or machine rotated tool with cutting edges to produce circular holes in metals, plastics, wood, etc. It consists of a hardened steel bar with usually two helical grooves or 'flutes' ending in two angled cutting edges. The flutes permit many regrinds and assist in removal of cuttings.

Drills vary in size from a fraction of a millimetre to over 10 cm. As with a lathe turning tool, the cutting edges must have top rake and clearance. Grinding is best done on a special drill grinding machine.
5.3.1 Helix and point angles

The helix angle is usually a standard size but 'quick' and 'slow' helix angles are used for particular materials. It is sometimes necessary, e.g. for brass and thin material, to grind a short length of straight flute, as shown. It is also sometimes necessary to thin down the web or core.

The point angle was traditionally about 120° (included angle), but other angles are now used to suit the material. The lip clearance also varies (see table).

5.3.2 Core drills

Core drills have three or four flutes and are used for opening out existing holes, e.g. core holes in castings.

5.3.3 Reamers

A reamer is used to finish a hole accurately with a good surface finish. It is a periphery cutting tool, unlike the drill which is end cutting. Rake and clearance are required as shown; note that a reamer must be ground on the clearance face otherwise the size will be lost. Flutes may be straight or helical (usually left handed). A hand reamer requires a long slow taper, but machine reamers have a short 45° lead. The hole is drilled only slightly smaller than the reamer diameter, the allowance is about 0.015 mm per millimetre, but depends on the material. Taper reamers are used for finishing holes for taper pins.

5.3.4 Drilling parameters

The tables below give drilling feeds and speeds including information on drilling plastics. Cutting lubricants for drilling, reaming and tapping are also given and tapping drill sizes for metric coarse threads. A table of suggested angles for drills is given.
Drilling feeds

<table>
<thead>
<tr>
<th>Drill diameter (mm)</th>
<th>Hard materials*</th>
<th>Soft materials†</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>3.0</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>6.0</td>
<td>0.07</td>
<td>0.10</td>
</tr>
<tr>
<td>9.0</td>
<td>0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>12.0</td>
<td>0.12</td>
<td>0.20</td>
</tr>
<tr>
<td>19.0</td>
<td>0.18</td>
<td>0.30</td>
</tr>
<tr>
<td>25.0</td>
<td>0.22</td>
<td>0.35</td>
</tr>
</tbody>
</table>

*Steels above 0.3 %C and alloy steels.
†Grey cast iron, steels below 0.3 %C, brass, bronze, aluminium alloys, etc.

High-speed-drill speeds

<table>
<thead>
<tr>
<th>Material</th>
<th>Speed* (m s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast iron</td>
<td>0.4–0.6</td>
</tr>
<tr>
<td>Mild steel</td>
<td>0.3–0.5</td>
</tr>
<tr>
<td>60/40 brass</td>
<td>0.8–1.0</td>
</tr>
<tr>
<td>Medium carbon steel</td>
<td>0.2–0.3</td>
</tr>
</tbody>
</table>

*Speed = πDN/60 000 m s⁻¹, where D = diameter (mm), N = number of revolutions per minute.

Drilling plastics, cutting speeds and feeds

<table>
<thead>
<tr>
<th>Material</th>
<th>Condition</th>
<th>Cutting speed (m min⁻¹)</th>
<th>Feed (mm rev⁻¹) for nominal hole diameter (mm) of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.5 3.0 6.0 12.0 20.0 25.0 30.0 50.0</td>
</tr>
<tr>
<td>Polyethylene, polypropylene, TFE-fluorcarbon</td>
<td>Extruded, moulded or cast</td>
<td>33</td>
<td>0.12 0.25 0.30 0.38 0.46 0.50 0.64 0.76</td>
</tr>
<tr>
<td>High-impact styrene, modified acrylic</td>
<td>Extruded, moulded or cast</td>
<td>33</td>
<td>0.05 0.10 0.15 0.15 0.20 0.20 0.25</td>
</tr>
<tr>
<td>Nylon, acetals, polycarbonate</td>
<td>Moulded</td>
<td>33</td>
<td>0.05 0.12 0.1 0.20 0.25 0.30 0.38 0.38</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>Moulded or extruded</td>
<td>66</td>
<td>0.03 0.05 0 0.10 0.13 0.15 0.18 0.20</td>
</tr>
<tr>
<td>Soft grades of thermosetting plastic</td>
<td>Cast, moulded or filled</td>
<td>50</td>
<td>0.08 0.13 0 0.20 0.25 0.30 0.38 0.38</td>
</tr>
<tr>
<td>Hard grades of thermosetting plastic</td>
<td>Cast, moulded or filled</td>
<td>33</td>
<td>0.05 0.13 0.15 0.20 0.25 0.30 0.38 0.38</td>
</tr>
</tbody>
</table>
Cutting lubricants for drilling, reaming and tapping

<table>
<thead>
<tr>
<th>Material</th>
<th>Drilling</th>
<th>Reaming</th>
<th>Tapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild steel (hot and cold rolled)</td>
<td>Soluble oil, mineral oil, lard oil</td>
<td>Mineral lard oil</td>
<td>Soluble oil, lard oil</td>
</tr>
<tr>
<td>Tool steel (carbon and high speed)</td>
<td>Soluble oil, lard oil with sulphur</td>
<td>Lard oil</td>
<td>Sulphur base oil, mineral lard oil</td>
</tr>
<tr>
<td>Alloy steel</td>
<td>Soluble oil, mineral oil</td>
<td>Lard oil</td>
<td>Sulphur base oil, mineral lard oil</td>
</tr>
<tr>
<td>Brass and bronze</td>
<td>Dry, lard oil, paraffin mixture</td>
<td>Soluble oil</td>
<td>Soluble oil, lard oil</td>
</tr>
<tr>
<td>Copper</td>
<td>Soluble oil</td>
<td>Soluble oil</td>
<td>Soluble oil, lard oil</td>
</tr>
<tr>
<td>Aluminium</td>
<td>Paraffin, lard oil</td>
<td>Mineral lard oil</td>
<td>Soluble oil, mineral lard oil</td>
</tr>
<tr>
<td>Monel metal</td>
<td>Lard oil, sulphur base oil</td>
<td>Mineral lard oil, sulphur base oil</td>
<td>Mineral lard oil, sulphur base oil</td>
</tr>
<tr>
<td>Malleable iron</td>
<td>Soluble oil</td>
<td>Soluble oil</td>
<td>Soluble oil</td>
</tr>
<tr>
<td>Cast iron</td>
<td>Dry</td>
<td>Dry</td>
<td>Dry, lard oil for nickel cast iron</td>
</tr>
</tbody>
</table>

Tapping drill sizes for metric coarse threads

<table>
<thead>
<tr>
<th>Nominal diameter (mm)</th>
<th>Nominal diameter (mm)</th>
<th>Nominal diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>20.0</td>
<td>2.50</td>
</tr>
<tr>
<td>2.0</td>
<td>24.0</td>
<td>3.00</td>
</tr>
<tr>
<td>2.5</td>
<td>30.0</td>
<td>3.50</td>
</tr>
<tr>
<td>3.0</td>
<td>36.0</td>
<td>4.00</td>
</tr>
<tr>
<td>3.5</td>
<td>42.0</td>
<td>4.50</td>
</tr>
<tr>
<td>4.0</td>
<td>48.0</td>
<td>5.00</td>
</tr>
<tr>
<td>5.0</td>
<td>56.0</td>
<td>5.50</td>
</tr>
<tr>
<td>6.0</td>
<td>64.0</td>
<td>6.00</td>
</tr>
<tr>
<td>8.0</td>
<td>72.0</td>
<td>6.00</td>
</tr>
<tr>
<td>10.0</td>
<td>80.0</td>
<td>6.00</td>
</tr>
<tr>
<td>12.0</td>
<td>90.0</td>
<td>6.00</td>
</tr>
<tr>
<td>14.0</td>
<td>100.0</td>
<td>6.00</td>
</tr>
<tr>
<td>16.0</td>
<td>117.5</td>
<td>7.50</td>
</tr>
</tbody>
</table>
Drill angles

<table>
<thead>
<tr>
<th>Material</th>
<th>Helix angle</th>
<th>Point angle (°)</th>
<th>Lip clearance (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium alloy</td>
<td>Quick</td>
<td>140</td>
<td>12–15</td>
</tr>
<tr>
<td>Magnesium alloy</td>
<td>Standard</td>
<td>100</td>
<td>12–15</td>
</tr>
<tr>
<td>Brass</td>
<td>Slow</td>
<td>130</td>
<td>10–12</td>
</tr>
<tr>
<td>Copper</td>
<td>Quick</td>
<td>125</td>
<td>12–15</td>
</tr>
<tr>
<td>Bakelite</td>
<td>Slow</td>
<td>30</td>
<td>12–15</td>
</tr>
<tr>
<td>Manganese steel</td>
<td>Slow</td>
<td>130</td>
<td>7–10</td>
</tr>
</tbody>
</table>

5.4 Milling

5.4.1 Milling process

Milling machines produce mainly flat surfaces by means of a rotating cutter with multiple cutting edges. The two main types of machine are the horizontal and the vertical spindle. Milling cutters usually have teeth cut on the periphery and/or on the end of a disk or cylinder. Alternatively, ‘inserted-tooth’ cutters with replaceable teeth may be used. In horizontal milling ‘up-cutting’ is the usual practice, but ‘down-cutting’ may be used. The types of cutter are listed in the following table.

Key:
- α = rake angle
- β = primary clearance angle
- γ = secondary clearance angle
- h = depth of cut
Types of milling cutter

<table>
<thead>
<tr>
<th>Type</th>
<th>Arrangement of teeth</th>
<th>Application</th>
<th>Size</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylindrical (slab or rolling)</td>
<td>Helical teeth on periphery</td>
<td>Flat surfaces parallel to cutter axis</td>
<td>Up to 160 x 160 mm</td>
<td></td>
</tr>
<tr>
<td>Side and face</td>
<td>On periphery and both sides</td>
<td>Steps and slots</td>
<td>Up to 200 mm diameter, 32 mm wide</td>
<td></td>
</tr>
<tr>
<td>Straddle ganged</td>
<td>On periphery and both sides</td>
<td>Cutting two steps</td>
<td>Up to 200 mm diameter, 32 mm wide</td>
<td></td>
</tr>
<tr>
<td>Side and face staggered tooth</td>
<td>Teeth on periphery. Face teeth on alternate sides</td>
<td>Deep slots</td>
<td>Up to 200 mm diameter, 32 mm wide</td>
<td></td>
</tr>
<tr>
<td>Single angle</td>
<td>Teeth on conical surface and flat face</td>
<td>Angled surfaces and chamfers</td>
<td>60-85° in 5° steps</td>
<td></td>
</tr>
</tbody>
</table>
Types of milling cutter (continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>Arrangement of teeth</th>
<th>Application</th>
<th>Size</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double angle</td>
<td>Teeth on two conical faces</td>
<td>Vee slots</td>
<td>45°, 60°, 90°</td>
<td></td>
</tr>
<tr>
<td>Rounding</td>
<td>Concave quarter circle and flat face</td>
<td>Corner radius on edge</td>
<td>1.5–20 mm radius</td>
<td></td>
</tr>
<tr>
<td>Involute gear cutter</td>
<td>Teeth on two involute curves</td>
<td>Involute gears</td>
<td>Large range</td>
<td></td>
</tr>
<tr>
<td>End mill</td>
<td>Helical teeth at one end and circumferential</td>
<td>Light work, slots, profiling, facing narrow surfaces</td>
<td>≤ 50 mm</td>
<td></td>
</tr>
</tbody>
</table>
Types of milling cutter (continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>Arrangement of teeth</th>
<th>Application</th>
<th>Size</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tee slot</td>
<td>Circumferential and both sides</td>
<td>Tee slots in machine table</td>
<td>For bolts up to 24 mm diameter</td>
<td></td>
</tr>
<tr>
<td>Dovetail</td>
<td>On conical surface and one end face</td>
<td>Dovetail machine slides</td>
<td>38 mm diameter, 45° and 60°</td>
<td></td>
</tr>
<tr>
<td>Shell end mill</td>
<td>Circumferential and one end</td>
<td>Larger work than end mill</td>
<td>40–160 mm diameter</td>
<td></td>
</tr>
<tr>
<td>Slitting saw (slot)</td>
<td>Circumferential teeth</td>
<td>Cutting off or slitting. Screw slotting</td>
<td>60–400 mm diameter</td>
<td></td>
</tr>
<tr>
<td>Concave–convex</td>
<td>Curved teeth on periphery</td>
<td>Radiusing</td>
<td>1.5–20 mm radius</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- Tee slot diagram
- Dovetail diagram
- Shell end mill diagram
- Slitting saw diagram
- Concave–convex diagram
5.4.2 Milling parameters

Power for peripheral milling

Symbols used:

\[P = \text{power (watts)} \]
\[v = \text{cutting speed (m s}^{-1}\text{)} \]
\[z = \text{number of teeth} \]
\[b = \text{chip width (mm)} \]
\[C = \text{constant} \]
\[f = \text{feed per tooth (mm)} \]
\[d = \text{depth of cut (mm)} \]
\[r = \text{radius of cutter (mm)} \]
\[x, y, k \text{ and } C \text{ are indices} \]
\[k = \text{constant} \]

\[P = kvzbCf^x \left(\frac{d}{r} \right)^y \]

Values of \(x, y, k \) and \(C \) are given in the tables.

<table>
<thead>
<tr>
<th>Material</th>
<th>(x)</th>
<th>(y)</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steels</td>
<td>0.85</td>
<td>0.925</td>
<td>0.164</td>
</tr>
<tr>
<td>Cast iron</td>
<td>0.70</td>
<td>0.85</td>
<td>0.169</td>
</tr>
</tbody>
</table>

Material \(C^* \)

<table>
<thead>
<tr>
<th>Material</th>
<th>(C^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free machining carbon steel</td>
<td>980 (120 BHN) 1190 (180 BHN)</td>
</tr>
<tr>
<td>Carbon steels</td>
<td>1620 (125 BHN) 2240 (225 BHN)</td>
</tr>
<tr>
<td>Nickel-chrome steels</td>
<td>1460 (125 BHN) 2200 (270 BHN)</td>
</tr>
<tr>
<td>Nickel-molybdenum and chrome-molybdenum steels</td>
<td>1600 (150 BHN) 1960 (280 BHN)</td>
</tr>
<tr>
<td>Chrome-Vanadium steels</td>
<td>1820 (170 BHN) 2380 (190 BHN)</td>
</tr>
<tr>
<td>Flake graphite cast iron</td>
<td>635 (100 BHN) 1330 (263 BHN)</td>
</tr>
<tr>
<td>Nodular cast irons</td>
<td>1110 (annealed) 1240 (as cast)</td>
</tr>
</tbody>
</table>

* BHN numbers are hardness grades.

Milling cutting speeds

Let:
\[D = \text{cutter diameter (mm)} \]
\[N = \text{number of revolutions per minute} \]

Cutting speed \(v = \pi DN/1000 \text{ (m min}^{-1}\text{)} \)
Milling cutting speeds at a feed rate of 0.2 mm per tooth

<table>
<thead>
<tr>
<th>Metal being cut</th>
<th>Cutting speed (m min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Brazed cutters</td>
</tr>
<tr>
<td></td>
<td>ISO carbide grade</td>
</tr>
<tr>
<td></td>
<td>P10 P30 P40 K20</td>
</tr>
<tr>
<td>Mild steel</td>
<td>150 130 100 20</td>
</tr>
<tr>
<td>Carbon steel 0.7%</td>
<td>120 90 75 —</td>
</tr>
<tr>
<td>Steel castings</td>
<td>60 45 50 —</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>100 100 100 —</td>
</tr>
<tr>
<td>Grey cast iron</td>
<td>150 130 110 —</td>
</tr>
<tr>
<td>Aluminium alloy</td>
<td>— — 600 —</td>
</tr>
</tbody>
</table>

Milling cutting speeds for high-speed steel cutters

<table>
<thead>
<tr>
<th>Material being cut</th>
<th>Cutting speed (m min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy steel</td>
<td>10</td>
</tr>
<tr>
<td>Cast iron</td>
<td>20</td>
</tr>
<tr>
<td>Low-carbon steel</td>
<td>28</td>
</tr>
<tr>
<td>Bronze</td>
<td>35</td>
</tr>
<tr>
<td>Hard brass</td>
<td>45</td>
</tr>
<tr>
<td>Copper</td>
<td>60</td>
</tr>
<tr>
<td>Aluminium alloy</td>
<td>100</td>
</tr>
</tbody>
</table>

Table feed rate

For the values given in the table below

\[f_i = \frac{f_z N}{n} \text{ (mm min}^{-1}) \]

where: \(f = \) feed/tooth (mm), \(z = \) number of teeth, \(N = \) number of revolutions per minute of cutter.

Typical values of feed per tooth (mm)

<table>
<thead>
<tr>
<th>Material being cut</th>
<th>Face mills</th>
<th>Side and face mills</th>
<th>End mills</th>
<th>Saws</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HSS</td>
<td>Carbide</td>
<td>HSS</td>
<td>Carbide</td>
</tr>
<tr>
<td>Aluminium alloy,</td>
<td>0.55</td>
<td>0.33</td>
<td>0.28</td>
<td>0.13</td>
</tr>
<tr>
<td>brass, bronze</td>
<td>0.50</td>
<td>0.30</td>
<td>0.25</td>
<td>0.13</td>
</tr>
<tr>
<td>Copper</td>
<td>0.30</td>
<td>0.18</td>
<td>0.15</td>
<td>0.07</td>
</tr>
<tr>
<td>Cast iron</td>
<td>0.40</td>
<td>0.22</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>Low carbon steel</td>
<td>0.25</td>
<td>0.15</td>
<td>0.13</td>
<td>0.07</td>
</tr>
<tr>
<td>Alloy steel</td>
<td>0.20</td>
<td>0.13</td>
<td>0.10</td>
<td>0.05</td>
</tr>
</tbody>
</table>

HSS, high-speed steels.
These values should be lowered for finishing and increased for rough milling.
Metal removal rate in milling

<table>
<thead>
<tr>
<th>Material being cut</th>
<th>Metal removal rate (mm³ kW⁻¹ min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild steel</td>
<td>18 900</td>
</tr>
<tr>
<td>Alloy steel</td>
<td>10 500</td>
</tr>
<tr>
<td>Cast steel</td>
<td>12 600</td>
</tr>
<tr>
<td>Grey cast iron</td>
<td>12 600</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>8 400</td>
</tr>
<tr>
<td>Copper</td>
<td>18 900</td>
</tr>
<tr>
<td>Aluminium</td>
<td>42 000</td>
</tr>
<tr>
<td>Magnesium</td>
<td>42 000</td>
</tr>
<tr>
<td>Titanium</td>
<td>10 500</td>
</tr>
</tbody>
</table>

5.5 Grinding

5.5.1 Grinding machines

Grinding machines produce flat, cylindrical and other surfaces by means of high-speed rotating abrasive wheels. Grinding is a means of giving a more accurate finish to a part already machined, but is also a machining process in its own right. The main types of machine are: the 'surface grinding machine' for flat surfaces; and the 'cylindrical grinding machine' for cylindrical surfaces. More complex shapes are produced by shaped wheels called 'contour grinding wheels'. 'Bench' and 'pedestal' grinders are used for tool sharpening, etc.

5.5.2 Grinding wheels

Typical materials for wheels are bonded abrasive powders such as aluminium oxide (Al₂O₃), silicon carbide (SiC) and diamond dust.

![Contour grinding wheels](image1.png)

![Steel wheel coated with abrasive](image2.png)
5.5.3 Grinding process calculations (cylindrical grinding)

Symbols used:

- \(t \) = chip thickness (mm)
- \(f \) = feed or depth of cut (mm)
- \(p \) = pitch of grains (mm)
- \(b \) = width of cut (mm)
- \(P \) = power (watts)
- \(v \) = wheel peripheral velocity (mm s\(^{-1}\))
- \(u \) = work peripheral velocity (mm s\(^{-1}\))
- \(d \) = wheel diameter (mm)
- \(D \) = work diameter (mm)
- \(F \) = tangential force on wheel (newtons)

Chip thickness \(t = \frac{2pu}{v} \sqrt{\frac{(D + d)f}{Dd}} \) minus sign for internal grinding

\[
\text{Power } P = \frac{Fv}{1000}
\]

Energy per unit volume removed \(E = \frac{P}{bfv} \) (J mm\(^{-3}\))

5.6 Cutting-tool materials

5.6.1 Carbon steels

Their use is restricted to the cutting of soft metals and wood. Performance is poor above 250 °C.

5.6.2 High-speed steels

These are used extensively, particularly for multi-point tools. They have been replaced to a large extent by carbides for single-point tools. Their main application is for form tools and complex shapes, e.g. for gear-cutting and broaching. They are also used for twist drills, reamers, etc.

5.6.3 Carbides

These consist of powdered carbides of tungsten, titanium, tantalum, niobium, etc., with powdered cobalt as binder. They are produced by pressing the powder in dies and sintering at high temperature. They are then ground to the final shape. They are generally used as tips and can operate up to 1000 °C.

5.6.4 Laminated carbide

These consist of a hard thin layer of titanium carbide bonded to a tungsten carbide body. The surface has very high strength at high temperature, whilst the body has high thermal conductivity and thus efficient removal of heat.

5.6.5 Diamonds

These are the hardest of all cutting materials with low thermal expansion and good conductivity. They are twice as good as carbides under compression. A good finish can be obtained with non-ferrous metals and final polishing can be eliminated. Diamonds are particularly good for cutting aluminium and magnesium alloys, copper, brass and zinc. They have a long life.
5.6.6 Characteristics of steel tools

Carbon steels (for softer metals and wood; poor performance above 250°C)

<table>
<thead>
<tr>
<th>Composition</th>
<th>Characteristics</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain carbon steel, 0.2%Mn. water hardening
0.7–0.8%C</td>
<td>High toughness, low hardness</td>
<td>Shear blades, chisels, turning mandrels</td>
</tr>
<tr>
<td>0.9%C</td>
<td>General purpose. Best combination of toughness and hardness</td>
<td>Large taps and reamers</td>
</tr>
<tr>
<td>1.0–1.4%C</td>
<td>High hardness, keen edge, low shock resistance</td>
<td>Taps, screw dies, twist drills, mills for soft metals, files</td>
</tr>
<tr>
<td>Carbon steel + vanadium
0.8–1.0%C, 0.2%Mn, 0.2%Va</td>
<td>Water hardening, takes keen edge, more shock resistant than plain carbon steel</td>
<td>Screw taps and dies, twist drills, reamers, broaches</td>
</tr>
<tr>
<td>Chrome steel
0.9%C, 0.2%Mn, 0.5%Cr</td>
<td>Water hardening, good abrasion resistance, takes high compression</td>
<td>Drawing dies, wood planes, chisels</td>
</tr>
<tr>
<td>High manganese steel
0.55–0.8%C, 0.6–0.8%Mn</td>
<td>Oil hardening, tougher but less hard, high shock resistance</td>
<td>Bending form dies, hammers, tool shanks</td>
</tr>
</tbody>
</table>

High-speed steels

<table>
<thead>
<tr>
<th>Type</th>
<th>Composition (%)</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super</td>
<td>C 0.8 W 18/22 Cr 4.5 Va 1.5 Co 10/12 Mo —</td>
<td>Highest temperature of HSS. Very hard but not so tough. Most expensive. For materials with tensile strength > 1225 MPa</td>
</tr>
<tr>
<td>General purpose</td>
<td>C 0.75 W 18 Cr 4.15 Va 1.2 Co — Mo —</td>
<td>Tougher than super and cheaper, for materials over 1225 MPa tensile strength</td>
</tr>
<tr>
<td>General purpose tungsten/molybdenum</td>
<td>C 1.25 W 7 Cr 4.3 Va 2.8 Co 6 Mo 5.5</td>
<td>Better impact resistance and cheaper than general purpose HSS. High wear resistance</td>
</tr>
<tr>
<td>High vanadium</td>
<td>C 1.55 W 12.5 Cr 4.75 Va 5 Co 5 Mo —</td>
<td>Best abrasion resistance. Used for highly abrasive materials</td>
</tr>
</tbody>
</table>

HSS, high-speed steels.
5.6.7 **Carbide and ceramic tools**

Carbides are graded according to series (see table) and by a number from 01 (hardest) to 50 (toughest), e.g. P01 and K40.

Carbides

<table>
<thead>
<tr>
<th>Series</th>
<th>Material machined</th>
<th>Carbides</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Steel, steel castings</td>
<td>W, Ta, Tt, Ni with Co binder</td>
</tr>
<tr>
<td>M</td>
<td>Cast iron, non-ferrous, plastic</td>
<td>W with Co binder</td>
</tr>
<tr>
<td>K</td>
<td>Heat resistant steels, stainless steels</td>
<td>W with Co binder</td>
</tr>
</tbody>
</table>

Sintered carbide tools – cutting conditions and positive rake

<table>
<thead>
<tr>
<th>Material being cut</th>
<th>Cutting speed (m min⁻¹)</th>
<th>Top rake (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rough</td>
<td>Fine</td>
</tr>
<tr>
<td>Steel:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-medium carbon</td>
<td>75</td>
<td>120-210</td>
</tr>
<tr>
<td>Medium-high carbon</td>
<td>60</td>
<td>90-180</td>
</tr>
<tr>
<td>Nickel chrome</td>
<td>30</td>
<td>75-120</td>
</tr>
<tr>
<td>Cast iron:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 Brinell hardness</td>
<td>45-60</td>
<td>90-120</td>
</tr>
<tr>
<td>White heart</td>
<td>3-6</td>
<td>6-4</td>
</tr>
<tr>
<td>Copper</td>
<td>150-240</td>
<td>240-360</td>
</tr>
<tr>
<td>Brass</td>
<td>120-240</td>
<td>240-360</td>
</tr>
<tr>
<td>Bronze and gun metal</td>
<td>120-180</td>
<td>240-300</td>
</tr>
<tr>
<td>Aluminium alloy</td>
<td>90-150</td>
<td>180-225</td>
</tr>
<tr>
<td>Plastics</td>
<td>120-180</td>
<td>240-300</td>
</tr>
<tr>
<td>Glass</td>
<td>9-15</td>
<td>15-21</td>
</tr>
</tbody>
</table>

Ceramic tools (sintered aluminium oxide with grain refiners and binder)

<table>
<thead>
<tr>
<th>Material being cut</th>
<th>Cutting speed (m min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast iron</td>
<td>60-610</td>
</tr>
<tr>
<td>Steel</td>
<td>90-450</td>
</tr>
<tr>
<td>Aluminium</td>
<td>>610</td>
</tr>
</tbody>
</table>
5.7 General information on metal cutting

5.7.1 Cutting speeds and feed rates

<table>
<thead>
<tr>
<th>Material of workpiece</th>
<th>Cutting speed (m s(^{-1}))</th>
<th>Feed rate (mm rev.(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High-speed steel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turning</td>
<td>R & T</td>
</tr>
<tr>
<td>Mild steel</td>
<td>40</td>
<td>66</td>
</tr>
<tr>
<td>Cast steel</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Grey cast iron</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>Aluminium</td>
<td>90</td>
<td>50</td>
</tr>
<tr>
<td>Brass</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>Phosphor bronze</td>
<td>18</td>
<td>36</td>
</tr>
</tbody>
</table>

R, rough; F, fine; R & T, reaming and threading; D, drilling.

5.7.2 Power used and volume removed in metal cutting

Symbols used:

\(P = \) power (kW)
\(d = \) depth of cut (mm)
\(f = \) feed (mm rev.\(^{-1}\))
\(v = \) cutting speed (m min\(^{-1}\))
\(T = \) torque (N-m)
\(D = \) drill diameter (mm)
\(N = \) rotational speed (rev. min\(^{-1}\))
\(w = \) width of cut (mm)
\(f_m = \) milling machine table feed (mm min\(^{-1}\))
\(V = \) volume of metal removed (cm\(^3\) min\(^{-1}\))

<table>
<thead>
<tr>
<th>Material</th>
<th>(k_L)</th>
<th>(k_D)</th>
<th>(k_M)</th>
<th>Material</th>
<th>(k_L)</th>
<th>(k_D)</th>
<th>(k_M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>700</td>
<td>0.11</td>
<td>0.9</td>
<td>Mild steel</td>
<td>1200</td>
<td>0.36</td>
<td>2.7</td>
</tr>
<tr>
<td>Brass</td>
<td>1250</td>
<td>0.084</td>
<td>1.6</td>
<td>Tool steel</td>
<td>3000</td>
<td>0.40</td>
<td>7.0</td>
</tr>
<tr>
<td>Cast iron</td>
<td>900</td>
<td>0.07</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Power

Turning: \(P = \frac{k_1 dfv}{60000} \)
Drilling: \(T = k_2 f^{0.75} D^{1.8} \)
\(P = \frac{2\pi NT}{60000} \)
Milling: \(P = \frac{k_3 dwf_m}{60} \)

Volume of metal removed

Turning: \(V = dfv \)
Drilling: \(V = \frac{\pi D^2 fN}{4000} \)
Milling: \(V = \frac{wdf_m}{1000} \)

5.7.3 Surface finish

Different processes produce different degrees of finish on machined surfaces. These are graded from N1 with an average height of roughness of 0.025 \(\mu m \), up to N12 roughness 50 \(\mu m \). The manner in which a machined surface is indicated is shown.

Average height of roughness, \(h = \frac{a+b+c+\ldots}{L} \)
where \(a, b, c, \ldots = \text{area on graph}, \) and \(L = \text{length of surface} \).

<table>
<thead>
<tr>
<th>Roughness grade</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
<th>N4</th>
<th>N5</th>
<th>N6</th>
<th>N7</th>
<th>N8</th>
<th>N9</th>
<th>N10</th>
<th>N11</th>
<th>N12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h) ((\mu m))</td>
<td>0.025</td>
<td>0.05</td>
<td>0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.8</td>
<td>1.6</td>
<td>3.2</td>
<td>6.3</td>
<td>12.3</td>
<td>25</td>
<td>50</td>
</tr>
</tbody>
</table>

5.7.4 Merchants circle for tool forces

'Merchant's circle' is a well-known construction for the analysis of cutting forces for a single-point tool. If the cutting and feed forces, the initial and final chip thickness and the rake angle are known, then the other forces, friction and shear angles can be found.

Known:
- \(F_c \) = cutting force
- \(F_f \) = feed force
- \(t_1 \) = initial chip thickness
- \(t_2 \) = final chip thickness
- \(\alpha \) = tool rake angle

The diagram can be drawn to give:
- \(F_s \) = shear force
- \(F_r \) = resultant force
- \(F \) = friction force on tool face
- \(F_{ns} \) = force normal to shear force
- \(F_n \) = force normal to \(F \)
- \(\mu \) = coefficient of friction = \(F/F_n \)
- \(\theta \) = friction angle = \(\tan^{-1} \mu \)
- \(\phi \) = shear angle
5.7.5 Machining properties of thermoplastics

<table>
<thead>
<tr>
<th>Material</th>
<th>Rake angle (°)</th>
<th>Clearance angle (°)</th>
<th>Turning Cutting speed (m s⁻¹)</th>
<th>Feed (mm rev.⁻¹)</th>
<th>Drilling Cutting speed (m s⁻¹)</th>
<th>Feed (mm rev.⁻¹)</th>
<th>Milling Cutting speed (m s⁻¹)</th>
<th>Feed (mm s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nylon</td>
<td>0/-10</td>
<td>20/30</td>
<td>2.5–5.0</td>
<td>0.1–0.25</td>
<td>2.0–5.0</td>
<td>0.1–0.38</td>
<td>5</td>
<td>≤4</td>
</tr>
<tr>
<td>PTFE</td>
<td>0/-5</td>
<td>20/30</td>
<td>1.0–2.5</td>
<td>0.05–0.25</td>
<td>1.25–5.0</td>
<td>0.1–0.38</td>
<td>5</td>
<td>≤4</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>0/-5</td>
<td>20/30</td>
<td>1.5–5.0</td>
<td>0.05–0.25</td>
<td>0.5–10</td>
<td>0.1–0.38</td>
<td>5</td>
<td>≤4</td>
</tr>
<tr>
<td>Rigid PVC</td>
<td>0/-10</td>
<td>20/30</td>
<td>1.5–5.0</td>
<td>0.25–0.75</td>
<td>2.5–30</td>
<td>0.05–0.13</td>
<td>5</td>
<td>≤4</td>
</tr>
</tbody>
</table>

5.7.6 Negative rake cutting

<table>
<thead>
<tr>
<th>Material being cut</th>
<th>Roughing speed (m min⁻¹)</th>
<th>Finishing speed (m min⁻¹)</th>
<th>Feeds (mm/tooth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel 0.15%C</td>
<td>230</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>0.4%C</td>
<td>160</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>0.8%C</td>
<td>120</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Steel castings</td>
<td>90</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Phosphor bronze and gun metal</td>
<td>300</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>450</td>
<td>540</td>
<td></td>
</tr>
<tr>
<td>Brass</td>
<td>600</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>Aluminium and alloys</td>
<td>900</td>
<td>1200</td>
<td></td>
</tr>
</tbody>
</table>

Milling: 0.2–0.4
Turning: 0.25–0.5
5.7.7 Calculation of machining cost

The 'total-time cost per workpiece' is made up of 'machine-time cost', 'non-productive-time cost' and 'tool cost'. 'Machining-time cost' is for actual machining and includes overheads and wages. 'Non-productive-time cost' covers 'setting-up' and 'loading- and unloading-time cost'. 'Tool cost' combines 'tool-change-time cost' and actual 'tool cost'. The former is the cost of changing the cutting edge, the latter is the cost of the cutting plus resharpening. When 'total cost' is plotted against 'cutting speed' an optimum speed for minimum cost is found.

Let:
- \(C_m \) = machining-time cost per workpiece
- \(C_n \) = non-productive-time cost per workpiece
- \(C_c \) = tool-change-time cost per workpiece
- \(C_t \) = tool cost per workpiece

Total cost of machining \(C_{tot} = C_m + C_n + C_c + C_t \) (£/workpiece)

Total tool cost per workpiece \(C_{tt} = C_m + C_c \)

Let:
- \(t_m \) = machining time per workpiece (min)
- \(t_l \) = loading and unloading time per workpiece (min)
- \(t_s \) = setting time per batch (min)
- \(t_c \) = tool life (min)
- \(t_{ch} \) = tool change time (min)
- \(t_{sh} \) = tool sharpening time (min)
- \(R \) = cost rate per hour (£)
- \(n_b \) = number per batch
- \(n_s \) = number of resharpenings

\[
C_m = \frac{t_m R}{60}
\]

\[
C_n = \frac{\left(t_s + \frac{t_l}{n_b} \right) R}{60}
\]

\[
C_c = \frac{t_m t_c R}{60 t_i}
\]

\[
C_t = \frac{C_{tt} + t_{sh} t_m R}{1 + n_s} \frac{R}{60 t_i}
\]

5.7.8 Cutting fluids

It is necessary when machining to use some form of fluid which acts as a coolant and lubricant, resulting in a better finish and longer tool life. The fluid also acts as a rust preventative and assists in swarf removal. The following table lists various fluids and their advantages.

<table>
<thead>
<tr>
<th>Cutting fluid applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>Soluble oil</td>
</tr>
<tr>
<td>Clear soluble oil</td>
</tr>
<tr>
<td>Water based fluids</td>
</tr>
<tr>
<td>EP soluble oils</td>
</tr>
</tbody>
</table>
Cutting fluid applications (continued)

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight oils</td>
<td>Mineral or fatty oils (lard, sperm, olive, neat’s foot, rape, etc.) alone or compounded</td>
<td>Good lubricant. Often unstable.</td>
</tr>
<tr>
<td>Sulphurized EP oils</td>
<td>Straight oils with sulphur, zinc oxide or other additives (0.2–0.8%S)</td>
<td>Average coolant. Good lubricant. Pressure resistant. Prevents welding of chip on tool</td>
</tr>
<tr>
<td>Sulphochlorinated EP oils</td>
<td>Mineral and fatty oil blends with sulphur and chlorine additives</td>
<td>More efficient than sulphurized oils. For most arduous conditions. Highly resistant to welding of chip on tool</td>
</tr>
<tr>
<td>Chlorinated materials</td>
<td>Carbon tetrachloride and trichlorethylene alone or blended with oils</td>
<td>Very good EP fluid. Highly dangerous to use</td>
</tr>
<tr>
<td>Gases and vapours</td>
<td>Air, oil mist, CO₂</td>
<td>Limited cooling power. Chip dispersed</td>
</tr>
</tbody>
</table>

EP, extreme pressure.

5.8 Casting

Casting is the forming of metal or plastic parts by introducing the liquid material to a suitably shaped cavity (mould), allowing it to solidify, and then removing it from the mould. Further processing is usually required.

5.8.1 Sand casting

In sand casting the mould is made in a ‘moulding box’ using a special sand and a wooden ‘pattern’. Holes are produced by inserting previously made ‘cores’ of baked sand. Molten metal is poured into runners until it appears in risers. The casting is cleaned by chipping, grinding and sandblasting. Practically any metal can be cast.
5.8.2 Shell moulding

This is a form of sand casting done using a very fine sand mixed with synthetic resin. The pattern is made of machined and polished iron. The sand mixture is blown into a box containing the pattern which is heated to produce a hard, thin (6–10 mm) mould which is split and removed from the pattern and then glued together. It is a high-speed process, producing highly accurate castings.

5.8.3 Investment casting (lost wax casting)

Wax patterns are made from a permanent metal mould. The wax patterns are coated with ceramic slurry which is hardened and baked so that the wax is melted out. The cavity is filled with molten metal to give a precision casting. Any metal can be cast using this process.
5.8.4 Die casting

The mould is of steel in several parts dowelled together. Molten metal is fed by gravity or pressure and, when solid, is ejected by pins. Aluminium, copper, manganese and zinc alloy are suitable for casting by this method.

5.8.5 Centrifugal casting

Cylindrical or circular components such as piston rings, cylinder liners, pipes, etc., may be cast in a rotating mould. Centrifugal pressure gives a fine grain casting. Any metal may be cast using this process.
5.9 Metal forming processes

5.9.1 Hand forging and drop forging

'Forging' is the forming of metal parts by hammering, pressing, or bending to the required shape, usually at red heat. 'Hand forging' involves the use of an anvil and special hammers, chisels and swages. A 'drop forging machine' uses pneumatic or hydraulic pressure to compress hot metal blanks between hard steel dies.
5.9.2 Drawing process

This is the forming of flat metal blanks into box and cup-like shapes by pressing them with a shaped punch into a die. The process is used for cartridge cases, boxes, electrical fittings, etc.
5.9.3 Extrusion

Hot extrusion

A piece of red-hot bar or billet is placed in a cylinder and forced through a specially shaped die by a piston to produce long lengths of bar. Hollow sections can be made by placing a mandrel in the die orifice.

Cold extrusion

Soft metals such as aluminium and copper can be extruded cold. Practically all metals may be extruded.

5.9.4 Impact extrusion

A metal which is plastic when cold may be extruded by the impact of a high-velocity punch. The metal of the blank flows up the sides of the punch to produce a cylinder. The process is used for manufacturing toothpaste tubes, ignition coil cans, etc.
5.9.5 **Press work**

A press is used for a wide range of processes such as punching, piercing, blanking, notching, bending, drawing, and folding. It may be operated by means of a crank connected to a heavy flywheel or by hydraulic power. Formulae are given for various processes.

![Press work](image)

Rolling

In a rolling mill, red-hot ingots of steel or other metals are passed through successive pairs of specially shaped rollers to produce flat bar, sheet, I, T, channel, angle or other section bar. Final cold rolling may be carried out to give a better finish.

Universal Beams, Universal Columns, Joists, Angles, and Channels are made to British Standards BS 4: Part 1 and BS 4848: Part 4.

Sheet metal work

In sheet metal work allowance must be made for bends depending on the thickness of the material, the radius of the bend and bend angle.

![Rolling mill (rolling channel)](image)

Press tool theory

Punching process

Symbols used:

- $F_{\text{max}} =$ maximum shear force
- $\tau_u =$ ultimate shear stress
- $t =$ material thickness
- $x =$ penetration
- $p =$ perimeter of profile

Maximum shear force $F_{\text{max}} = \tau_u tp$.

Work done $W = F_{\text{max}} x$

Penetration ratio $c = \frac{x}{t}$

![Press tool theory](image)
Shearing process

Shearing force \(F = \frac{F_{\text{max}}}{1 + \frac{h}{x}} \)

where: \(h \) = the 'shear'.

Bending process

Bending force \(F_b = \tau_yLt \)
Planishing force \(F_t = \sigma_yLb \)
where: \(\tau_y \) = yield stress.

Initial length of strip \(L_i = h - t - 2r + b + \frac{\pi}{2} \left(r + \frac{t}{2} \right) \)

Drawing process

Blank diameter \(D = \sqrt{d^2 + 4dh} \)
Required force \(F = \pi \sigma_u \)
where: \(\sigma_u \) = ultimate tensile stress.

5.9.7 Sheet metal work

Allowance for right angle bend

Lengths \(a \) and \(b \) are reduced by an 'allowance' \(c \), and

\[
c = r + t - \frac{\pi}{4} \left(r + \frac{t}{2} \right)
\]

When \(r = 2t \) (as is often the case), \(c = 1.037t \).

Allowance for bend with outside angle \(\theta \)

\[
c = (r + t) \tan \frac{\theta}{2} - \frac{\pi \theta}{360} \left(r + \frac{t}{2} \right), \text{ (\(\theta \) in degrees)}
\]

When \(r = 2t \), \(c = \left(3 \tan \frac{\theta}{2} - 0.02188 \right) t \).
5.9.8 **Rolled sections**

Rolled sections are made to British Standards BS 4: Part 1 and BS 4848: Part 4.

Universal beams

\[D \times B = 127 \text{ mm} \times 76 \text{ mm} \text{ to } 914 \text{ mm} \times 419 \text{ mm.} \]

\(t \) and \(T \) are of several sizes in each case.

Universal columns

\[D \times B = 152 \text{ mm} \times 152 \text{ mm} \text{ to } 356 \text{ mm} \times 406 \text{ mm.} \]

\(t \) and \(T \) are in several sizes in each case.

Beams, columns and joists

Unequal angles

\[D \times B \text{ from } 40 \text{ mm} \times 25 \text{ mm} \text{ to } 200 \text{ mm} \times 150 \text{ mm.} \]

Channels

\[D \times B \text{ from } 76 \text{ mm} \times 38 \text{ mm} \text{ to } 432 \text{ mm} \times 102 \text{ mm.} \]

One value of \(t \) in each case.

Joists

From \(76 \text{ mm} \times 76 \text{ mm} \) to \(254 \text{ mm} \times 203 \text{ mm} \)

Equal angles

\[D \times B \text{ from } 25 \text{ mm} \times 25 \text{ mm} \text{ to } 200 \text{ mm} \times 200 \text{ mm.} \]

Several values of \(t \) in each case.
Miscellaneous rolled sections

- Z section
- Hexagonal bar
- Round bar
- Square bar
- Rail sections
- L section
- Rail sections
- T section
- Sheet pile
- Flat bar
- Bulb sections

5.10 Soldering and brazing

In soldering and brazing, bonding takes place at a temperature below the melting points of the metals being joined. The bond consists of a thin film of low-melting-point alloy known as 'solder' or 'filler'.

5.10.1 Solders and soldering

For small parts, a 'soldering iron', which is heated by gas or an internal electric element, is used. For large joints a gas flame is used.

Soft solder

This is a mixture of lead, tin and sometimes antimony. Typical solders are 50% tin and 50% lead (melting range 182–215°C), 60% tin and 40% lead (melting range 182–188°C) and 95% tin and 5% antimony (melting range 238–243°C). Solder is available in the form of bar or wire with cores of resin flux. Flux is used to prevent oxidation by forming a gas which excludes air from the joint. A solution of zinc chloride (killed spirits) or resin are commonly used as fluxes.

Silver solder

This is an alloy of silver, copper and zinc with a melting point of about 700°C used mainly for joining brass and copper. It is in strip form and is used with a flux powder.
5.10.2 **Soldered joints**

- Single lap joint
- Offset lap joint
- Double lock joint

5.10.3 **Brazing**

Above about 800 °C the process is called 'brazing' (or hard soldering). Brazing rod (50% copper and 50% zinc) is used for general work, with a flux consisting of borax mixed to a paste with water. A torch supplied with mains gas and compressed air is used. Taps control the flow and mixture. For large-scale production work, induction and furnace heating are used.

5.10.4 **Brazed joints**

In the figure, several types of brazed joint are shown; the arrows indicate the direction of the load.
5.11 Gas welding

In gas welding the heat to melt the metal parts being welded is produced by the combination of oxygen and an inflammable gas such as acetylene, propane, butane, etc. Acetylene is the most commonly used gas; propane and butane are cheaper but less efficient.

5.11.1 Oxyacetylene welding

A flame temperature of about 3250 °C melts the metals which fuse together to form a strong joint. Extra metal may be supplied from a filler rod and a flux may be used to prevent oxidation. The gas is supplied from high pressure bottles fitted with special regulators which reduce the pressure to 0.13-0.5 bar. Gauges indicate the pressures before and after the regulators.

A torch mixes the gases which issue from a copper nozzle designed to suit the weld size. The process produces harmful radiation and goggles must be worn. The process is suitable for steel plate up to 25 mm thick, but is mostly used for plate about 2 mm thick.

<table>
<thead>
<tr>
<th>Welding rod diameter (mm)</th>
<th>Edge preparation</th>
<th>Method</th>
<th>Speed (mm min⁻¹)</th>
<th>Metal thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>Leftward</td>
<td>127-152</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100-127</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>1.5-3</td>
<td>Leftward</td>
<td>100-127</td>
<td>100-127</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>90-100</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>Leftward</td>
<td>75-90</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rightward</td>
<td>60-75</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>Rightward</td>
<td>50-60</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35-40</td>
<td>8.0</td>
<td></td>
</tr>
</tbody>
</table>
Gas welding – edge preparation, speed, and metal thickness (continued)

<table>
<thead>
<tr>
<th>Welding rod diameter (mm)</th>
<th>Edge preparation</th>
<th>Method</th>
<th>Speed (mm min⁻¹)</th>
<th>Metal thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3–6.5</td>
<td></td>
<td>Rightward</td>
<td>30–35</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22–25</td>
<td>12.5</td>
</tr>
<tr>
<td>6.5</td>
<td></td>
<td>Rightward</td>
<td>19–22</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15–16</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10–12</td>
<td>25.0</td>
</tr>
</tbody>
</table>

5.11.2 Type of flame

It is essential to have the correct type of flame which depends on the proportions of the gases.

Neutral flame

This is the type most used since it least affects the metal being welded. The almost transparent flame has a well defined blue core with a rounded end. Roughly equal amounts of gas are used.

Carburizing flame

This flame contains excess acetylene and hence carbon. Carbides are formed which produce brittleness. The flame is used when ‘hard facing’. The blue core is surrounded by a white plume.

Oxidizing flame

This flame contains an excess of oxygen which produces brittle low-strength oxides. Use of this flame should be avoided when welding brass and bronze.

5.11.3 Method of gas welding

Two methods of gas welding are used: leftward and rightward.

Leftward welding

This is used for plate up to 4.5 mm thick and for non-ferrous metals. The torch is moved towards the filler rod and given a slight side-to-side motion.
Rightward welding

This is used for plate thicker than 4.5 mm. For larger plate the edges are chamfered to give an included angle of about 80°.

5.11.4 Fillers and fluxes

The table below gives recommended filler rod materials and fluxes for gas welding.

<table>
<thead>
<tr>
<th>Metal welded</th>
<th>Filler</th>
<th>Flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low carbon steels</td>
<td>Low carbon steel rod sometimes copper coated. 1.6–5 mm diameter</td>
<td>No flux required</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>Special steel rod for each type. 1.6–3.2 mm diameter</td>
<td>Grey powder in paste with water (m.p. 910°C). Weld cleaned with 5% caustic soda solution, then with hot water</td>
</tr>
<tr>
<td>Cast iron</td>
<td>High silicon cast iron rod. 5 or 6 mm square</td>
<td>Grey powder in paste with water (m.p. 850°C). Excess removed by chipping and wire brushing</td>
</tr>
<tr>
<td>Brass or bronze</td>
<td>Silicon bronze sometimes flux coated. 1.6–6 mm diameter</td>
<td>Pale blue powder (m.p. 875°C) in paste with alcohol. Cleaning is with boiling water and by brushing</td>
</tr>
<tr>
<td>Aluminium and alloys</td>
<td>Pure aluminium or alloy. 1.6–5 mm diameter</td>
<td>White powder in paste with water (m.p. 570°C). Cleaning by dipping in 5% nitric acid solution and hot water wash</td>
</tr>
<tr>
<td>Copper</td>
<td>Copper–silver low melting point rods. 3.2 mm diameter</td>
<td>White powder in paste with water. Cleaning is with boiling water and by wire brushing</td>
</tr>
</tbody>
</table>
5.11.5 Flame cutting

Steel plate over 300 mm thick can be cut by this method, either manually or by automatic machine using templates for complicated shapes. Thin plates may be stacked so that many may be cut at one time.

The plate is first heated by a mixture of oxygen and acetylene until red hot and then a stream of oxygen alone is used to burn with the metal with intense heat. Propane and butane may be used with plain carbon steel, but are not as effective as oxygen. Cutting speeds of up to 280 mm min$^{-1}$ are possible with 25-mm plate. Typical speeds are given in the table.

Oxyacetylene cutting

<table>
<thead>
<tr>
<th>Plate thickness (mm)</th>
<th>Nozzle diameter (mm)</th>
<th>Acetylene pressure (bar)</th>
<th>Oxygen pressure (bar)</th>
<th>Cutting speed (mm min$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.8</td>
<td>0.14</td>
<td>1.8</td>
<td>430</td>
</tr>
<tr>
<td>13</td>
<td>1.2</td>
<td>0.21</td>
<td>2.1</td>
<td>360</td>
</tr>
<tr>
<td>25</td>
<td>1.6</td>
<td>0.14</td>
<td>2.8</td>
<td>280</td>
</tr>
<tr>
<td>50</td>
<td>1.6</td>
<td>0.14</td>
<td>3.2</td>
<td>200</td>
</tr>
<tr>
<td>75</td>
<td>1.6</td>
<td>0.14</td>
<td>3.5</td>
<td>200</td>
</tr>
<tr>
<td>100</td>
<td>2.0</td>
<td>0.14</td>
<td>3.2</td>
<td>150</td>
</tr>
</tbody>
</table>

5.12 Arc welding

5.12.1 Description of arc welding

The heat of fusion is generated by an electric arc struck between two electrodes, one of which is the workpiece and the other a 'welding rod'. The welding rod is made of a metal similar to the workpiece and is coated with a solid flux which melts and prevents oxidation of the weld. The rod is used to fill the welded joint. Power is obtained from an a.c. or d.c. 'welding set' providing a regulated low-voltage high-current supply to an 'elec-
trode holder' and 'earthing clamp'. The work is done on a steel 'welding table' to which the work is clamped and to which the earthing clamp is attached to complete the circuit.

5.12.2 Arc welding processes

<table>
<thead>
<tr>
<th>Joint condition – fusion</th>
<th>Laser welding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual metal arc</td>
<td>Plasma welding</td>
</tr>
<tr>
<td>Carbon arc</td>
<td>Electron beam welding</td>
</tr>
<tr>
<td>Submerged arc</td>
<td>Joint condition – solid phase</td>
</tr>
<tr>
<td>Tungsten inert gas (TIG)</td>
<td>Butt welding</td>
</tr>
<tr>
<td>Metal inert gas (MIG)</td>
<td>Flash butt welding</td>
</tr>
<tr>
<td>Open arc, automatic</td>
<td>Friction welding</td>
</tr>
<tr>
<td>Atomic hydrogen</td>
<td>Ultrasonic welding</td>
</tr>
<tr>
<td>Arc stud welding</td>
<td>Sintering</td>
</tr>
<tr>
<td>Spot welding</td>
<td>Joint condition – solid/liquid</td>
</tr>
<tr>
<td>Roller spot welding</td>
<td>Brazing</td>
</tr>
<tr>
<td>Projection welding</td>
<td></td>
</tr>
<tr>
<td>Electroslag</td>
<td></td>
</tr>
<tr>
<td>Thermit</td>
<td></td>
</tr>
</tbody>
</table>

5.12.3 Types of weld

The fillet weld, the most used, is formed in the corner of overlapping plates, etc. In the interests of economy, and to reduce distortion, intermittent welds are often used for long runs, with correct sequencing to minimize distortion. Tack welds are used for temporary holding before final welding.

Plug welds and slot welds are examples of fillet welds used for joining plates. For joining plates end to end, butt welds are used. The plates must have been suitably prepared, e.g. single or double V or U, or single and double bevel or J. To avoid distortion, especially with thick plates, an unequal V weld may be used: the smaller weld being made first.
Resistance welding is used to produce spot welds and stud welding by passing an electric current through the two metal parts via electrodes. In seam welding the electrodes are wheels.

BUTT WELDS

- Single V (SVBW)
- Double V (DVBW)
- Single U (SUBW)
- Double U (DUBW)
- Unequal double V
- Unequal double U
- Single bevel (SBBW)
- Double bevel (DBBW)
- Single J (SJBW)
- Double J (DJBW)
5.12.4 Weld symbols

Weld symbols (BS 499)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 mm fillet weld on one side of joint</td>
</tr>
<tr>
<td></td>
<td>V butt weld on one side</td>
</tr>
<tr>
<td></td>
<td>8 mm fillet weld all round on one side</td>
</tr>
<tr>
<td></td>
<td>U butt weld on one side with sealing run</td>
</tr>
<tr>
<td></td>
<td>6 mm fillet weld on both sides of joint</td>
</tr>
<tr>
<td></td>
<td>5-6 mm diameter spot welds at 70 mm pitch</td>
</tr>
<tr>
<td></td>
<td>8 mm fillet weld all round on both sides</td>
</tr>
<tr>
<td></td>
<td>Intermittent 8 mm fillet welds, 25 mm long, starting with 50 mm space and 50 mm gaps</td>
</tr>
</tbody>
</table>

5.12.5 Gas-shielded metal arc welding

In this process an inert gas such as argon is used as a flux; the electrode is a continuously fed consumable wire. Two processes are used: 'metal inert gas' (MIG) and 'tungsten inert gas' (TIG).

Welding processes

A table is given of all the welding processes, together with recommendations for the use of a number of these.
Recommended welding processes

<table>
<thead>
<tr>
<th>Process</th>
<th>Low carbon steel</th>
<th>Medium carbon steel</th>
<th>Low alloy steel</th>
<th>Austenitic stainless steel</th>
<th>Ferritic and stainless steel</th>
<th>High temperature and high strength alloy steel</th>
<th>Cast iron</th>
<th>Aluminium and alloys</th>
<th>Magnesium and alloys</th>
<th>Copper and alloys</th>
<th>Nickel and alloys</th>
<th>Titanium and alloys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual metal arc</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>U</td>
<td>N</td>
<td>R</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Submerged arc</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>U</td>
<td>N</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>TIG</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>MIG</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>R</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Flash welding</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Spot welding</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>U</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>Oxyacetylene welding</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>U</td>
</tr>
<tr>
<td>Furnace brazing</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>N</td>
<td>S</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>Torch brazing</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
</tr>
</tbody>
</table>

R = recommended; S = satisfactory; N = not recommended; U = unsuitable.

Edge preparation

Plates below 8 mm thick may be butt welded without preparation; with thicker plate the edges must be chamfered to obtain good penetration. The groove is then filled by depositing a number of runs of weld. The double V uses less material for thick plates and also reduces thermal distortion. A U preparation approaches a uniform weld width.

Arc welding – edge preparation

Close butt

Single V

Double V
Positions of welding

In addition to ‘flat’ welding, which is the ideal position, three other positions are used: horizontal, vertical and overhead. If one member is vertical and one horizontal the position is called horizontal–vertical. In the last case a number of passes must be made to overcome the tendency for molten metal to run out. (See figure.)

5.12.9 Welding terminology, throat size and allowable stress

Welding practice

The relevant British Standards are BS 4360: Part 2, BS 639, BS 1719, BS 1856, BS 2642, BS 449 and BS 499.

<table>
<thead>
<tr>
<th>Effective throat size (t = throat thickness, L = leg length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fillet angle, θ (°)</td>
</tr>
<tr>
<td>t/L</td>
</tr>
</tbody>
</table>
5.13 Limits and fits

It is impossible to make components the exact size and an allowance or ‘tolerance’ must be made which depends on the process and the application. The tolerance results in two extremes of size which must be maintained. The tolerances of two fitting parts, e.g. a shaft in a bearing, determines the type of ‘fit’ and makes interchangeability possible.

British Standard BS 4500: Part 1: 1969, ‘ISO Limits and Fits’, gives a comprehensive system relating to holes and shafts; it can, however, be used for other components, e.g. a key in a keyway.

5.13.1 Terminology

Taking the example of holes and shafts, there is a ‘basic size’ and then maximum and minimum sizes for each, their differences being the tolerances. Their differences from the basic size are called the ‘maximum and minimum deviations’.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Stress (N mm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>115</td>
</tr>
<tr>
<td>50</td>
<td>160</td>
</tr>
<tr>
<td>55</td>
<td>195</td>
</tr>
</tbody>
</table>
Types of fit

The fit describes the manner in which two parts go together. A ‘clearance fit’ means that the shaft will always be smaller than the hole. An ‘interference fit’ means that the shaft will always be larger than the hole and a fitting force will be necessary. A ‘transition fit’ means that there may be either clearance or interference.

Tolerance

BS 4500 gives 18 ‘tolerance grades’ numbered IT01, IT0, IT1, IT2, up to IT16. The actual tolerance depends on the size of the component (see table below).

5.13.2 Selected Fits

BS 4500 ‘Selected Fits’ Gives a much smaller range of fits, the hole tolerance is denoted by the letter H and the shaft by a lower-case letter (see table). For conventionally manufactured parts, the five fits given are usually sufficient (see table).

Selected fits (BS 4500)

<table>
<thead>
<tr>
<th>Hole</th>
<th>H7</th>
<th>H8</th>
<th>H9</th>
<th>H11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft</td>
<td>c11</td>
<td>d10</td>
<td>e9</td>
<td>f7</td>
</tr>
<tr>
<td></td>
<td>g6</td>
<td>h6</td>
<td>k6</td>
<td>n6</td>
</tr>
<tr>
<td></td>
<td>p6</td>
<td>s6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reduced range of fits for conventionally manufactured parts

<table>
<thead>
<tr>
<th>Type of fit</th>
<th>Shaft tolerance</th>
<th>Hole tolerance</th>
<th>Description of fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance</td>
<td>f7</td>
<td>H8</td>
<td>Running</td>
</tr>
<tr>
<td>Clearance</td>
<td>g6</td>
<td>H7</td>
<td>Sliding</td>
</tr>
<tr>
<td>Transition</td>
<td>k6</td>
<td>H7</td>
<td>Keying</td>
</tr>
<tr>
<td>Interference</td>
<td>p6</td>
<td>H7</td>
<td>Press</td>
</tr>
<tr>
<td>Interference</td>
<td>s6</td>
<td>H7</td>
<td>Push or shrink</td>
</tr>
</tbody>
</table>

5.13.3 Example of symbols and sizes on drawing

Preliminary design drawing

It is convenient to use symbols, e.g. 45 mm shaft and ‘transition’ fit. Tolerance is given as: φ 45H7/k6.

Production drawing

For a 30 mm diameter shaft, fit H9/d10:

Hole maximum limit of size = 30.012 mm
Hole minimum limit of size = 30.000 mm
Therefore tolerance = 0.012 mm.
Shaft maximum limit of size = 30.015 mm
Shaft minimum limit of size = 30.002 mm
Therefore, tolerance = 0.013 mm

On the drawing these parameters would be given as (rounding off to nearest 0.01 mm):

Hole: 30.01
30.00
30.00

Shaft: 30.02
30.01
30.00
6.1 Cast irons

6.1.1 Grey iron

Grey iron is so called because of the colour of the fracture face. It contains 1.5–4.3% carbon and 0.3–5% silicon plus manganese, sulphur and phosphorus. It is brittle with low tensile strength, but is easy to cast.

Properties of some grey irons (BS 1452)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Tensile strength (N mm$^{-2}$)</th>
<th>Compressive strength (N mm$^{-2}$)</th>
<th>Transverse strength (N mm$^{-2}$)</th>
<th>Hardness, BHN*</th>
<th>Modulus of elasticity (GN m$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>160</td>
<td>620</td>
<td>290–370</td>
<td>160–180</td>
<td>76–104</td>
</tr>
<tr>
<td>17</td>
<td>260</td>
<td>770</td>
<td>450–490</td>
<td>190–250</td>
<td>110–130</td>
</tr>
<tr>
<td>24</td>
<td>370</td>
<td>1240</td>
<td>620–700</td>
<td>240–300</td>
<td>124–145</td>
</tr>
</tbody>
</table>

*BHN = Brinell hardness number.

6.1.2 Spheroidal graphite (SG) iron

This is also called nodular iron because the graphite is in the form of small spheres or nodules. These result in higher ductility which can be improved further by heat treatment. Mechanical properties approach those of steel combined with good castability.

Properties of some SG irons (BS 2789)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Tensile strength (N mm$^{-2}$)</th>
<th>0.5% permanent set stress (N mm$^{-2}$)</th>
<th>Hardness BHN*</th>
<th>Minimum elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNG24/17</td>
<td>370</td>
<td>230</td>
<td>140–170</td>
<td>17</td>
</tr>
<tr>
<td>SNG37/2</td>
<td>570</td>
<td>390</td>
<td>210–310</td>
<td>2</td>
</tr>
<tr>
<td>SNG47/2</td>
<td>730</td>
<td>460</td>
<td>280–450</td>
<td>2</td>
</tr>
</tbody>
</table>

*BH = Brinell hardness number.
6.1.3 Malleable irons

These have excellent machining qualities with strength similar to grey irons but better ductility as a result of closely controlled heat treatment. There are three types: white heart with superior casting properties; black heart with superior machining properties; and pearlitic which is superior to the other two but difficult to produce.

Properties of some malleable irons

<table>
<thead>
<tr>
<th>Type</th>
<th>Grade</th>
<th>Minimum tensile strength (N mm⁻²)</th>
<th>Yield point strength (N mm⁻²)</th>
<th>Hardness, BHN*</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White heart,</td>
<td>W22/24</td>
<td>310–340</td>
<td>180–200</td>
<td>248 (max.)</td>
<td>4</td>
</tr>
<tr>
<td>BS 309</td>
<td></td>
<td>340–370</td>
<td>200–220</td>
<td>248 (max.)</td>
<td>6</td>
</tr>
<tr>
<td>Black heart,</td>
<td>B18/6</td>
<td>280</td>
<td>170</td>
<td>150 (max.)</td>
<td>6</td>
</tr>
<tr>
<td>BS 310</td>
<td></td>
<td>310</td>
<td>190</td>
<td>150 (max.)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>B20/10</td>
<td>340</td>
<td>200</td>
<td>150 (max.)</td>
<td>14</td>
</tr>
<tr>
<td>Pearlitic,</td>
<td>P28/6</td>
<td>430</td>
<td>—</td>
<td>143–187</td>
<td>6</td>
</tr>
<tr>
<td>BS 3333</td>
<td></td>
<td>460</td>
<td>—</td>
<td>170–229</td>
<td>4</td>
</tr>
</tbody>
</table>

*BHN = Brinell hardness number.

6.1.4 Alloy irons

The strength, hardness, wear resistance, temperature resistance, corrosion resistance, machinability and castability of irons may be improved by the addition of elements such as nickel, chromium, molybdenum, vanadium, copper and zirconium.

6.2 Carbon steels

6.2.1 Applications of plain carbon steels

These are alloys of iron and carbon, chemically combined, with other elements such as manganese, silicon, sulphur, phosphorus, nickel and chromium. Properties are governed by the amount of carbon and the heat treatment used. Plain carbon steels are broadly classified as: low carbon (0.05–0.3% C), with high ductility and ease of forming; medium carbon (0.3–0.6% C), in which heat treatment can double the strength and hardness but retain good ductility; and high carbon (> 0.6% C), which has great hardness and high strength and is used for tools, dies, springs, etc.
Applications of plain carbon steels

<table>
<thead>
<tr>
<th>% Carbon</th>
<th>Name</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>Dead mild</td>
<td>Sheet, strip, car bodies, tinplate, wire, rod, tubes</td>
</tr>
<tr>
<td>0.08–0.15</td>
<td>Mild</td>
<td>Sheet, strip, wire, rod, nails, screws, reinforcing bars</td>
</tr>
<tr>
<td>0.15</td>
<td>Mild</td>
<td>Case carburizing type</td>
</tr>
<tr>
<td>0.10–0.30</td>
<td>Mild</td>
<td>Steel plate, sections, structural steel</td>
</tr>
<tr>
<td>0.25–0.40</td>
<td>Medium carbon</td>
<td>Bright drawn bar</td>
</tr>
<tr>
<td>0.30–0.45</td>
<td>Medium carbon</td>
<td>High tensile tube, shafts</td>
</tr>
<tr>
<td>0.40–0.50</td>
<td>Medium carbon</td>
<td>Shafts, gears, forgings, castings, springs</td>
</tr>
<tr>
<td>0.55–0.65</td>
<td>High carbon</td>
<td>Forging dies, springs, railway rails</td>
</tr>
<tr>
<td>0.65–0.75</td>
<td>High carbon</td>
<td>Hammers, saws, cylinder liners</td>
</tr>
<tr>
<td>0.75–0.85</td>
<td>High carbon</td>
<td>Chisels, die blocks for forging</td>
</tr>
<tr>
<td>0.85–0.95</td>
<td>High carbon</td>
<td>Punches, shear blades, high tensile wire</td>
</tr>
<tr>
<td>0.95–1.10</td>
<td>High carbon</td>
<td>Knives, axes, screwing taps and dies, milling cutters</td>
</tr>
</tbody>
</table>

Properties of carbon steels (BS 970)

<table>
<thead>
<tr>
<th>Type</th>
<th>Composition (%)</th>
<th>Mechanical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tensile strength (N mm⁻²)</td>
<td>Elongation (%)</td>
</tr>
<tr>
<td>070 M20</td>
<td>0.2 – 0.7</td>
<td>400 – 21</td>
</tr>
<tr>
<td>070 M26</td>
<td>0.26 – 0.7</td>
<td>430 – 20</td>
</tr>
<tr>
<td>080 M30</td>
<td>0.3 – 0.8</td>
<td>460 – 20</td>
</tr>
<tr>
<td>080 M36</td>
<td>0.36 – 0.8</td>
<td>490 – 18</td>
</tr>
<tr>
<td>080 M40</td>
<td>0.4 – 0.8</td>
<td>510 – 16</td>
</tr>
<tr>
<td>080 M46</td>
<td>0.46 – 0.8</td>
<td>540 – 14</td>
</tr>
<tr>
<td>080 M50</td>
<td>0.5 – 0.8</td>
<td>570 – 14</td>
</tr>
<tr>
<td>216 M28</td>
<td>0.28 – 0.25 – 1.3</td>
<td>540 – 10</td>
</tr>
</tbody>
</table>
Properties of carbon steels (BS 970) (continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>Composition (%)</th>
<th>Mechanical properties</th>
<th>Applications, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>Si</td>
<td>Mn</td>
</tr>
<tr>
<td>080 M15</td>
<td>0.15</td>
<td>0.25</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>060A96†</td>
<td>0.99–1.0</td>
<td>0.1–0.7</td>
<td>0.5–0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*BHN = Brinell hardness number.
†To BS 950.

Tempering temperature and colour for carbon steels

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Colour</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>Pale yellow</td>
<td>Hacksaw blades</td>
</tr>
<tr>
<td>230</td>
<td>Light yellow</td>
<td>Planing and slotting tools, hammers</td>
</tr>
<tr>
<td>240</td>
<td>Straw yellow</td>
<td>Milling cutters, drills, reamers</td>
</tr>
<tr>
<td>250</td>
<td>Dark yellow</td>
<td>Taps, dies, shear blades, punches</td>
</tr>
<tr>
<td>260</td>
<td>Brown-yellow</td>
<td>Wood drills, stone-cutting tools</td>
</tr>
<tr>
<td>270</td>
<td>Brown-purple</td>
<td>Axe blades, press tools</td>
</tr>
<tr>
<td>280</td>
<td>Purple</td>
<td>Cold chisels, wood chisels, plane blades</td>
</tr>
<tr>
<td>290</td>
<td>Dark purple</td>
<td>Screw drivers</td>
</tr>
<tr>
<td>300</td>
<td>Dark blue</td>
<td>Wood saws, springs</td>
</tr>
<tr>
<td>450–700</td>
<td>Up to dark red</td>
<td>Great toughness at expense of hardness</td>
</tr>
</tbody>
</table>

6.3 Alloy steels

6.3.1 Classification

Alloy steels differ from carbon steels in that they contain a high proportion of other alloying elements. The following are regarded as the minimum levels:

<table>
<thead>
<tr>
<th>Element</th>
<th>%</th>
<th>Element</th>
<th>%</th>
<th>Element</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>0.3</td>
<td>Lead</td>
<td>0.1</td>
<td>Silicon</td>
<td>2.0</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.5</td>
<td>Manganese and silica</td>
<td>2.0</td>
<td>Sulphur and phosphorus</td>
<td>0.2</td>
</tr>
<tr>
<td>Cobalt</td>
<td>0.3</td>
<td>Molybdenum</td>
<td>0.1</td>
<td>Tungsten</td>
<td>0.3</td>
</tr>
<tr>
<td>Copper</td>
<td>0.4</td>
<td>Nickel</td>
<td>0.5</td>
<td>Vanadium</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Alloy steels are classified according to increasing proportion of alloying elements and also phase change during heating and cooling as follows:

low alloy steels
medium alloy steels
high alloy steels

and according to the number of alloying elements as follows:

ternary – one element
quaternary – two elements
complex – more than two elements

6.3.2 General description

Low alloy steels

These generally have less than 1.8% nickel, less than 6% chromium, and less than 0.65% molybdenum. The tensile strength range is from 450–620 N mm\(^{-2}\) up to 850–1000 N mm\(^{-2}\).

Medium alloy steels

These have alloying elements ranging from 5–12%. They do not lend themselves to classification. They include: nickel steels used for structural work, axles, shafts, etc.; nickel–molybdenum steels capable of being case-hardened, which are used for cams, camshafts, rolling bearing races, etc.; and nickel–chrome–molybdenum steels of high strength which have good fatigue resistance.

High alloy steels

These have more than 12% alloying elements. A chromium content of 13–18% (stainless steel) gives good corrosion resistance; high wear resistance is obtained with austenitic steel containing over 11% manganese. Some types have good heat resistance and high strength.

6.3.3 Effect of alloying elements

Aluminium

This acts as a deoxidizer to increase resistance to oxidation and scaling. It aids nitriding, restricts grain growth, and may reduce strength unless in small quantities. The range used is 0–2%.

Chromium

A range of 0.3–4%, improves wear, oxidation, scaling resistance, strength and hardenability. It also increases high-temperature strength, but with some loss of ductility. Chromium combines with carbon to form a wear-resistant microstructure. Above 12% the steel is stainless, up to 30% it is used in martensitic and ferritic stainless steel with nickel.

Cobalt

Cobalt provides air hardening and resistance to scaling. It improves the cutting properties of tool steel with 8–10%. With chromium, cobalt gives certain high alloy steels high-temperature scaling resistance.

Copper

The typical range is 0.2–0.5%. It has limited application for improving corrosion resistance and yield strength of low alloy steels and promotes a tenacious oxide film.

Lead

Up to 0.25% is used. It increases machineability in plain carbon steels rather than in alloy steels.

Manganese

The range used is 0.3–2%. It reduces sulphur brittleness, is pearlitic up to 2%, and a hardening agent up to 1%. From 1–2% it improves strength and toughness and is non-magnetic above 5%.

Molybdenum

The range used is 0.3–5%. It is a carbide forming element which promotes grain refinement and increases high-temperature strength, creep resistance, and hardenability. Molybdenum reduces temper brittleness in nickel–chromium steels.

Nickel

The range used is 0.3–5%. It improves strength, toughness and hardenability, without affecting ductility. A high proportion of it improves corrosion resistance. For parts subject to fatigue 5% is used, and above 27% the steel is non-magnetic. Nickel promotes an austenitic structure.
Silicon

The usual range is 0.2–3%. It has little effect below 3%. At 3% it improves strength and hardenability but reduces ductility. Silicon acts as a deoxidizer.

Sulphur

Up to 0.5% sulphur forms sulphides which improve machineability but reduces ductility and weldability.

Titanium

This is a strong carbide forming element. In proportions of 0.2–0.75% it is used in maraging steels to make them age-hardening and to give high strength. It stabilizes austenitic stainless steel.

6.3.4 Typical properties of alloy steels

Typical properties of alloy steels

<table>
<thead>
<tr>
<th>Content</th>
<th>Type</th>
<th>Specification</th>
<th>Tensile strength (N/mm²)</th>
<th>Fatigue limit (N/mm²)</th>
<th>Weldability</th>
<th>Corrosion resistance</th>
<th>Machine-ability</th>
<th>Formability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>1%Cr, Mo</td>
<td>709M40</td>
<td>1240</td>
<td>540</td>
<td>PH/FHTR</td>
<td>PR</td>
<td>F/HTR</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>1.75%Ni, Cr, Mo</td>
<td>817M40</td>
<td>1550</td>
<td>700</td>
<td>PH/FHTR</td>
<td>PR</td>
<td>P/HTR</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>4.25%Ni, Cr, Mo</td>
<td>835M30</td>
<td>1550</td>
<td>700</td>
<td>PH/FHTR</td>
<td>PR</td>
<td>P/HTR</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>3%Cr, Mo, V</td>
<td>897M39</td>
<td>1310</td>
<td>620</td>
<td>PH/FHTR</td>
<td>PR</td>
<td>P/HTR</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>5%Cr, Mo, V</td>
<td>AISI H11</td>
<td>2010</td>
<td>850</td>
<td>PH/FHTR</td>
<td>PR</td>
<td>P/HTR</td>
<td>F</td>
</tr>
<tr>
<td>Medium</td>
<td>9%Ni, Co</td>
<td>HP9/4/45</td>
<td>1390</td>
<td>—</td>
<td>FHTR</td>
<td>PR</td>
<td>P/HTR</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>12–14%Cr</td>
<td>410S21</td>
<td>1850</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Cr, W, Mo, V</td>
<td>Vascojet MA</td>
<td>1160</td>
<td>340</td>
<td>P/FHTR</td>
<td>F</td>
<td>F/HTR</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vanadium</td>
<td>2320</td>
<td>960</td>
<td>PH/FHTR</td>
<td>PR</td>
<td>P/HTR</td>
<td>F</td>
</tr>
<tr>
<td>High</td>
<td>13%Cr, Ni, Mo</td>
<td>316S12</td>
<td>620</td>
<td>260</td>
<td>G</td>
<td>G</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>19%Cr, Ni, Mo</td>
<td>317S16</td>
<td>650</td>
<td>260</td>
<td>G</td>
<td>G</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>15%Cr, Ni, Mo, V</td>
<td>ESSHETE 1250</td>
<td>590</td>
<td>—</td>
<td>G/FHTR</td>
<td>G/HT</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>17%Cr, Ni</td>
<td>AISI 301</td>
<td>740</td>
<td>280</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>17%Cr, Ni, Al</td>
<td>17/7 PH Armco</td>
<td>1480</td>
<td>—</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>14%Cr, Ni, Cu, Mo, Nb</td>
<td>REX 627</td>
<td>1470</td>
<td>540</td>
<td>FHTR</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>15%Cr, Ni, Mo, V</td>
<td>AM 355 Allegheny Ludium</td>
<td>1480</td>
<td>740</td>
<td>FHTR</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18%Ni, Co, Mo</td>
<td>300 grade maraging INCO</td>
<td>1930</td>
<td>—</td>
<td>G/FHTR</td>
<td>PR</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>18%Ni, Co, Mo</td>
<td>250 grade maraging</td>
<td>1700</td>
<td>660</td>
<td>G/FHTR</td>
<td>PR</td>
<td>F</td>
<td>P</td>
</tr>
</tbody>
</table>

A = ausformed, MA = maritempered, CR = cold rolled, P = poor, F = fair, G = good, PH = preheat required, PR = protection required, HT = at high temperature, HTR = when heat treated, FHTR = final heat treatment required.

Tungsten

This forms hard stable carbides and promotes grain refining with great hardness and toughness at high temperatures. It is a main alloying element in high speed tool steels. It is also used for permanent-magnet steels.

Vanadium

This is a carbide forming element and deoxidizer used with nickel and/or chromium to increase strength. It improves hardenability and grain refinement and combines with carbon to form wear-resistant microconstituents. As a deoxidizer it is useful for casting steels, improving strength and hardness and eliminating blowholes, etc. Vanadium is used in high-speed and pearlitic chromium steels.
6.3.5 *Cast high-alloy steels*

<table>
<thead>
<tr>
<th>BS specification</th>
<th>Type</th>
<th>Composition (%)</th>
<th>Tensile strength (N mm⁻²)</th>
<th>Yield stress (N mm⁻²)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3100 BW 10</td>
<td>Austenitic manganese steel</td>
<td>Cu</td>
<td>Si</td>
<td>Mn</td>
<td>Ni</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>11.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Possess great hardness hence used for earth moving equipment pinions, sprockets, etc., where wear resistance is important.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3100 410 C 21</td>
<td>13% chromium steel</td>
<td>Cu</td>
<td>Si</td>
<td>Mn</td>
<td>Ni</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>10.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Mildly corrosion resistant. Used in paper industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3100 302 C25</td>
<td>Austenitic chromium-nickel steel</td>
<td>Cu</td>
<td>Si</td>
<td>Mn</td>
<td>Ni</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>2.0</td>
<td>8.0</td>
<td>21.0</td>
</tr>
<tr>
<td></td>
<td>Cast stainless steel. Corrosion resistant and very ductile.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3100 315 C16</td>
<td>Austenitic chromium-nickel-molybdenum steel</td>
<td>Cu</td>
<td>Si</td>
<td>Mn</td>
<td>Ni</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>2.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>Cast stainless steel with higher nickel content giving increased corrosion resistance. Molybdenum gives increased weldability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3100 302 C35</td>
<td>Heat-resisting alloy steel</td>
<td>Cu</td>
<td>Si</td>
<td>Mn</td>
<td>Ni</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>10.0</td>
<td>22.0</td>
</tr>
<tr>
<td>3100 334 C11</td>
<td>Mildly corrosion resistant. Used in paper industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td>2.0</td>
<td>65.0</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>Can withstand temperatures in excess of 650°C. Temperature at which scaling occurs raised due to chromium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.3.6 *Weldable structural steel for hollow sections*

Mechanical properties of weldable structural steel for hollow sections (BS 4360: 1972)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Tensile strength (N mm⁻²)</th>
<th>Yield strength* (N mm⁻²)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43C</td>
<td>430/540</td>
<td>255</td>
<td>22</td>
</tr>
<tr>
<td>43D</td>
<td>430/540</td>
<td>255</td>
<td>22</td>
</tr>
<tr>
<td>43E</td>
<td>430/540</td>
<td>270</td>
<td>22</td>
</tr>
<tr>
<td>50B</td>
<td>490/620</td>
<td>355</td>
<td>20</td>
</tr>
<tr>
<td>50C</td>
<td>490/620</td>
<td>355</td>
<td>20</td>
</tr>
<tr>
<td>50D</td>
<td>490/620</td>
<td>355</td>
<td>20</td>
</tr>
<tr>
<td>55C</td>
<td>550/700</td>
<td>450</td>
<td>19</td>
</tr>
<tr>
<td>55E</td>
<td>550/700</td>
<td>450</td>
<td>19</td>
</tr>
</tbody>
</table>

*Up to 16 mm thickness.
6.4 Stainless steels

6.4.1 Types of stainless steel

Stainless steels comprise a wide range of iron alloys containing more than 10% chromium. They are classified as austenitic, ferritic and martensitic.

Austenitic stainless steels

A standard composition is 18%Cr, 8%Ni (18/8 steel). These steels have high resistance to corrosion, good weldability, high toughness, especially at low temperature, and excellent ductility. They may be hardened by cold working and are non-magnetic. Special properties are produced by the addition of molybdenum, cadmium, manganese, tungsten and columbium.

Ferritic stainless steels

The chromium content is normally 16–20% with corrosion resistance better than martensitic but inferior to austenitic steels. They are used for presswork because of their high ductility, but are subject to brittle failure at low temperature. They have moderate strength and limited weldability and are hardenable by heat treatment. The low carbon content makes them suitable for forming without cracking. They are magnetic and have low coefficients of thermal expansion.

Martensitic stainless steels

The chromium content is 12–18% and the nickel content is 1–3%. These steels are the least corrosion resistant of all. They are unsuitable for welding or cold forming. They have moderate machineability and are used where high resistance to tempering at high temperature is important, e.g. for turbine blades. They can be heat treated to improve properties and can be made with a wide range of properties. They are used for cutlery.

6.4.2 Selection of stainless steels

The applications of the different stainless steels are listed below.

Austenitic

Ferritic

Mouldings and trim for cars, furniture, television sets, gas and electric cookers, refrigerators, etc. Coinage. Spoons and forks. Domestic iron soles. Vehicle silencers. Driving mirror frames. Fasteners. Parts to resist atmospheric corrosion. Heat-resistant parts, e.g. oil-burner sleeves and parts working up to 800°C.

Martensitic

6.4.3 Properties of typical types

<table>
<thead>
<tr>
<th>BS code no.</th>
<th>Remarks</th>
<th>Condition</th>
<th>Yield stress (N mm(^{-2}))</th>
<th>Tensile strength (N mm(^{-2}))</th>
<th>Elongation (%)</th>
<th>Composition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless Iron 1 (416S21)</td>
<td>Martensitic steel, easy to manipulate</td>
<td>AD</td>
<td>430</td>
<td>510</td>
<td>12</td>
<td>0.9–0.15 1 (max.) 11.5/13.5</td>
</tr>
<tr>
<td>Stainless Iron 1 (416S29)</td>
<td>Similar to above, but harder</td>
<td>AD</td>
<td>465</td>
<td>540</td>
<td>10</td>
<td>0.14/0.2 1 (max.) 11.5/13.5</td>
</tr>
<tr>
<td>Stainless Iron W</td>
<td>Weldable martensitic steel</td>
<td>AD</td>
<td>465</td>
<td>540</td>
<td>10</td>
<td>— — —</td>
</tr>
<tr>
<td>Stainless Steel 17 (430S15)</td>
<td>Ferritic stainless steel more corrosion resistant than stainless iron</td>
<td>S</td>
<td>310</td>
<td>510</td>
<td>25</td>
<td>0.1 (max.) 0.5 16/18</td>
</tr>
<tr>
<td>Stainless Steel 20 (430S16)</td>
<td>Similar to above, but a little more corrosion resistant</td>
<td>S</td>
<td>340</td>
<td>540</td>
<td>25</td>
<td>0.1 (max.) 0.5 16/18</td>
</tr>
<tr>
<td>Stainless Steel 27</td>
<td>Ferritic steel with excellent resistance to scaling at high temperature</td>
<td>S</td>
<td>390</td>
<td>560</td>
<td>20</td>
<td>— — —</td>
</tr>
<tr>
<td>18/8 (302S25)</td>
<td>Austenitic steel, good for working and welding. Must be softened after welding</td>
<td>AD</td>
<td>620</td>
<td>700</td>
<td>25</td>
<td>0.12 8.11 17/19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>230</td>
<td>540</td>
<td>50</td>
<td>0.12 8.12 17/19</td>
</tr>
</tbody>
</table>
6.4.3 Properties of typical types (continued)

<table>
<thead>
<tr>
<th>BS code no.</th>
<th>Remarks</th>
<th>Condition</th>
<th>Yield stress (N mm(^{-2}))</th>
<th>Tensile strength (N mm(^{-2}))</th>
<th>Elongation (%)</th>
<th>Composition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/8 low (304S15)</td>
<td>As above, but low carbon content. Need not be softened after welding</td>
<td>AD</td>
<td>540</td>
<td>620</td>
<td>25</td>
<td>0.06 (max.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>230</td>
<td>540</td>
<td>30</td>
<td>0.06 (max.)</td>
</tr>
<tr>
<td>18/8/T 18/12/Ni (347S17)</td>
<td>Special welding qualities, need not be softened after welding. 18/12/Nb contains niobium</td>
<td>AD</td>
<td>700</td>
<td>770</td>
<td>20</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>280</td>
<td>590</td>
<td>40</td>
<td>0.08</td>
</tr>
<tr>
<td>18/8/M (316S16)</td>
<td>For resistance to certain concentrations of acetic and sulphuric acids</td>
<td>AD</td>
<td>700</td>
<td>770</td>
<td>20</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>330</td>
<td>660</td>
<td>40</td>
<td>0.07</td>
</tr>
<tr>
<td>18/8/MT</td>
<td>As above but need not be softened after welding</td>
<td>AD</td>
<td>700</td>
<td>770</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>330</td>
<td>660</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>'316'</td>
<td>Similar to 18/8/M</td>
<td>AD</td>
<td>700</td>
<td>770</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>310</td>
<td>620</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>25/20</td>
<td>Austenitic steel with good heat-resisting properties</td>
<td>AD</td>
<td>700</td>
<td>775</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>340</td>
<td>620</td>
<td>45</td>
<td>—</td>
</tr>
<tr>
<td>23/16/T</td>
<td>Similar to 25/20, can be welded without subsequent softening</td>
<td>AD</td>
<td>700</td>
<td>770</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>390</td>
<td>660</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>16/6/H</td>
<td>An austenitic/martensitic steel suitable for hardening</td>
<td>S</td>
<td>310</td>
<td>850</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>1080</td>
<td>1240</td>
<td>15</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

S = softened, H = hardened, AD = as drawn, AH = air hardened.
6.5 British Standard specification of steels

The relevant standard is BS 970 'Wrought Steels'. The standard is in six parts:

Part 1 Carbon and carbon manganese steels including free-cutting steels
Part 2 Direct hardening alloy steels
Part 3 Steels for Case Hardening
Part 4 Stainless, heat resisting and spring steels
Part 5 Carbon and alloy spring steels
Part 6 SI metric values (for use with Parts 1 to 5)

Each steel is designated by six symbols:

First three digits
000-199: Carbon and carbon-manganese steels. Digits represent 100 times the percentage of manganese.
200-240: Free cutting steels. Second and third digits represent 100 times the percentage of sulphur.
250: Silicon-manganese steel
300-449: Heat-resistant, stainless and valve steels
500-999: Alloy steels

Letter
The letters A, M, H and S indicate if the steel is supplied to – chemical analysis, mechanical properties, hardenability requirements, or is stainless, respectively.

Last two digits
These give 100 times the percentage of carbon, except for stainless steels.

Example
070M20: A plain carbon steel with 0.2% carbon and 0.7% manganese. The mechanical properties, i.e. tensile strength, yield strength, elongation and hardness, are given in the standard.

6.6 Non-ferrous metals

6.6.1 Copper and copper alloys

Electrolytically refined copper (99.95% pure) is used for components requiring high conductivity. Less pure copper is used for chemical plant, domestic plumbing, etc. Copper is available in the form of wire, sheet, strip, plate, round bar and tube.

Copper is used in many alloys, including brasses, bronzes, aluminium bronze, cupronickel, nickel-silver and beryllium–copper.

Composition and mechanical properties of some copper alloys

<table>
<thead>
<tr>
<th>Type and uses</th>
<th>Composition (%)</th>
<th>Mechanical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cu</td>
<td>Zn</td>
</tr>
<tr>
<td>Muntz metal: die stampings, and extrusions</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>Free-cutting brass: high-speed machining</td>
<td>58</td>
<td>39</td>
</tr>
</tbody>
</table>
Composition and mechanical properties of some copper alloys (continued)

<table>
<thead>
<tr>
<th>Type and uses</th>
<th>Composition (%)</th>
<th>Condition</th>
<th>Mechanical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cu</td>
<td>Zn</td>
<td>Others</td>
</tr>
<tr>
<td>Cartridge brass:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>severe cold working</td>
<td>70</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard brass:</td>
<td>65</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>presswork</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admiralty gunmetal:</td>
<td>88</td>
<td>2</td>
<td>10 Sn</td>
</tr>
<tr>
<td>general-purpose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>castings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphor bronze:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>castings and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bushes for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bearings</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applications of copper and copper alloys

<table>
<thead>
<tr>
<th>Type and composition</th>
<th>Condition</th>
<th>Tensile MN/m²</th>
<th>Product</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure copper</td>
<td></td>
<td></td>
<td></td>
<td>High conductivity electrical applications</td>
</tr>
<tr>
<td>99.95%Cu</td>
<td>O</td>
<td>220</td>
<td>Sheet, strip wire</td>
<td>High conductivity electrical applications</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.85%Cu</td>
<td>O</td>
<td>220</td>
<td>All wrought forms</td>
<td>Chemical plant. Deep drawn. spun articles</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.25%Cu + 0.5%As</td>
<td>O</td>
<td>220</td>
<td>All wrought forms</td>
<td>Retains strength at high temperatures. Heat exchangers, steam pipes</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>360</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brasses

<table>
<thead>
<tr>
<th>Type and composition</th>
<th>Condition</th>
<th>Tensile MN/m²</th>
<th>Product</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%Cu, 10%Zn-</td>
<td>O</td>
<td>280</td>
<td>Sheet, strip and wire</td>
<td>Imitation jewellery, decorative work</td>
</tr>
<tr>
<td>gilding metal</td>
<td>H</td>
<td>510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70%Cu, 30%Zn-</td>
<td>O</td>
<td>325</td>
<td>Sheet, strip</td>
<td>High ductility for deep drawing</td>
</tr>
<tr>
<td>cartridge brass</td>
<td>H</td>
<td>700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65%Cu, 35%Zn-</td>
<td>O</td>
<td>340</td>
<td>Sheet, strip and extrusions</td>
<td>General cold working alloy</td>
</tr>
<tr>
<td>standard brass</td>
<td>H</td>
<td>700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60%Cu, 40%Zn-</td>
<td>M</td>
<td>375</td>
<td>Hot rolled plate and extrusions</td>
<td>Condenser and heat exchanger plates</td>
</tr>
<tr>
<td>Muntz metal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59%Cu, 35%Zn, 2%Mn,</td>
<td>M</td>
<td>600</td>
<td>Cast and hot worked forms</td>
<td>Ships screws, rudders</td>
</tr>
<tr>
<td>2%Al, 2%Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58%Cu, 39%Zn, 3%Pb-</td>
<td>M</td>
<td>440</td>
<td>Extrusions</td>
<td>High speed machine parts</td>
</tr>
<tr>
<td>free cutting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Applications of copper and copper alloys (continued)

<table>
<thead>
<tr>
<th>Type and composition</th>
<th>Condition</th>
<th>Tensile MN/m²</th>
<th>Product</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronzes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95.5%Cu, 3%Sn, 1.5Zn</td>
<td>O</td>
<td>325</td>
<td>Strip</td>
<td>Coinage</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>725</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5%Sn, 0.1%Zn, Cu</td>
<td>O</td>
<td>360</td>
<td>Sheet, strip and wire</td>
<td>Springs, steam turbine blades</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%Sn, 0.03-0.25P, Cu- phosphor bronze</td>
<td>M</td>
<td>280</td>
<td>Castings</td>
<td>Bushes, bearings and springs</td>
</tr>
<tr>
<td>10%Sn, 0.5%P, Cu</td>
<td>M</td>
<td>280</td>
<td>Castings</td>
<td>General-purpose castings and bearings</td>
</tr>
<tr>
<td>10%Sn, 2%Zn, Cu- Admiralty gunmetal</td>
<td>M</td>
<td>300</td>
<td>Castings</td>
<td>Pressure-tight castings, pump, valve bodies</td>
</tr>
<tr>
<td>Aluminium bronze</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95%Cu, 5%Al</td>
<td>O</td>
<td>400</td>
<td>Strip and tubing</td>
<td>Imitation jewellery, condenser tubes</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>770</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%Al, 2.5%Fe, 2-5%Ni, Cu</td>
<td>M</td>
<td>700</td>
<td>Hot worked and cast products</td>
<td>High-strength castings and forgings</td>
</tr>
<tr>
<td>Cupronickel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75%Cu, 25%Ni</td>
<td>O</td>
<td>360</td>
<td>Strip</td>
<td>British ‘silver’ coinage</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70%Cu, 30%Ni</td>
<td>O</td>
<td>375</td>
<td>Sheet and tubing</td>
<td>Condenser tubes, good corrosion resistance</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29%Cu, 68%Ni, 1.25%Fe, O-1.25%Mn</td>
<td>H</td>
<td>550</td>
<td>All forms</td>
<td>Chemical plant, good corrosion resistance</td>
</tr>
<tr>
<td>Nickel-silver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55%Cu, 27%Zn, 18%Ni</td>
<td>O</td>
<td>375</td>
<td>Sheet and strip</td>
<td>Decorative use and cutlery</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium–copper</td>
<td>WP</td>
<td>1300</td>
<td>Sheet, strip, wire, forgings</td>
<td>Non-spark tools, springs</td>
</tr>
<tr>
<td>1.75–2.5%Be, 0.5%Co, Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

O = annealed, **M** = as manufactured, **H** = fully work hardened, **WP** = solution heat treated and precipitation hardened.

6.6.2 Aluminium and aluminium alloys

Pure aluminium is available in grades from 99% to 99.99% purity. It is soft and ductile but work hardens.

Pure aluminium is difficult to cast.

Alloying elements improve properties as follows:

- **Copper**: increases strength and hardness. Makes heat treatable.
- **Magnesium**: increases hardness and corrosion resistance.
- **Manganese**: increases strength.
- **Silicon**: lowers melting point, increases castability.
- **Silicon and magnesium**: gives a heat-treatable alloy.
- **Zinc**: increases strength and hardness.
- **Zinc and magnesium**: increases strength; makes heat treatable.
- **Bismuth**: increases machinability.
- **Lead**: increases machinability.
- **Boron**: increases electrical conductivity.
- **Nickel**: increases strength at high temperature.
- **Titanium**: increases strength and ductility.
- **Chromium, vanadium and zirconium**: also used.
Classification of aluminium alloys

Aluminium alloys may be classified as follows.

1. Wrought alloys: (a) heat-treatable
 (b) non-heat-treatable

2. Casting alloys: (a) heat-treatable
 (b) non-heat-treatable

Wrought aluminium alloys

<table>
<thead>
<tr>
<th>Composition (%)</th>
<th>Condition</th>
<th>0.1% proof stress (N mm⁻²)</th>
<th>Tensile strength (N mm⁻²)</th>
<th>Elongation (%)</th>
<th>Cold Machineability forming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-heat-treatable alloys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium 99.99</td>
<td>Annealed</td>
<td>—</td>
<td>90 (max.)</td>
<td>30</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Half hard</td>
<td>—</td>
<td>100–120</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full hard</td>
<td>—</td>
<td>130</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cu 0.15, Si 0.6, Fe 0.7, Mn 1.0, Zn 0.1, Ti 0.2, Al 97.2</td>
<td>Annealed</td>
<td>—</td>
<td>115 (max.)</td>
<td>30</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>Quarter hard</td>
<td>—</td>
<td>115–145</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Half hard</td>
<td>—</td>
<td>140–170</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Three-quarters hard</td>
<td>—</td>
<td>160–190</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full hard</td>
<td>—</td>
<td>180</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cu 0.1, Mg 7.0, Si 0.6, Fe 0.7, Mn 0.5, Zn 0.1, Cr 0.5, Ti 0.2, Al balance</td>
<td>Annealed</td>
<td>90</td>
<td>310–360</td>
<td>18</td>
<td>Good</td>
</tr>
<tr>
<td>Heat-treatable alloys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu 3.5–4.8, Mg 0.6, Si 1.5, Fe 1.0, Mn 1.2, Ti 0.3, Al balance</td>
<td>Solution treated</td>
<td>—</td>
<td>380</td>
<td>—</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Fully heat treated</td>
<td>—</td>
<td>420</td>
<td>—</td>
<td>Very good</td>
</tr>
<tr>
<td>Cu 0.1, Mg 0.4–1.5, Si 0.6–1.3, Fe 0.6, Mn 0.6, Zn 0.1, Cr 0.5, Ti 0.2, Al balance</td>
<td>Solution treated</td>
<td>110</td>
<td>185</td>
<td>18</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Fully heat treated</td>
<td>230</td>
<td>280</td>
<td>10</td>
<td>Very good</td>
</tr>
</tbody>
</table>
Aluminium alloys for sheet, strip, extrusions and forgings

<table>
<thead>
<tr>
<th>Specification no.</th>
<th>Composition (%)</th>
<th>Condition</th>
<th>Tensile strength (N mm⁻²)</th>
<th>Type of product and use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>99.99 Al</td>
<td>O</td>
<td>45</td>
<td>Sheet, strip. Linings for chemical and food plant</td>
</tr>
<tr>
<td>1A</td>
<td>99.80 Al</td>
<td>O</td>
<td>60</td>
<td>Sheet, strip. Linings for chemical and food plant</td>
</tr>
<tr>
<td>1C</td>
<td>99.0 Al</td>
<td>O</td>
<td>90</td>
<td>Sheet, strip, wire, extruded sections. Hollow ware, kitchen ware, bus-bars, decorative panelling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{1}{2}H$</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>Al, 1.25% Mn</td>
<td>O</td>
<td>110</td>
<td>Sheet, strip, extruded sections. Hollow ware, roofing, panelling, scaffolding, tubes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{1}{2}H$</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>N4</td>
<td>Al, 2 Mg</td>
<td>O</td>
<td>210</td>
<td>Sheet, plate, tubes, extrusions. Stronger deep-drawn articles, ship and boat construction, other marine applications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{1}{2}H$</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>N5</td>
<td>Al, 3.5 Mg</td>
<td>O</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{1}{2}H$</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>N6</td>
<td>Al, 5 Mg</td>
<td>O</td>
<td>280</td>
<td>Sheet, forgings, extrusions. Structural components for road and rail vehicles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{1}{2}H$</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>H10</td>
<td>Al, 0.7 Mg, 1.0 Si</td>
<td>W</td>
<td>270</td>
<td>Sheet, forgings, extrusions. Highly stressed aircraft parts, general engineering parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WP</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>H14</td>
<td>Al, 4.5 Cu, 0.75 Mg, 0.5 Mn</td>
<td>T</td>
<td>440</td>
<td>Sheet, forgings, extrusions. Highly stressed aircraft parts, general engineering parts</td>
</tr>
<tr>
<td>H15</td>
<td>Al, 4.5 Cu, 0.75 Mg, 0.5 Mn</td>
<td>WP</td>
<td>500</td>
<td>Tube. Highly stressed aircraft parts, general engineering parts</td>
</tr>
<tr>
<td>H16</td>
<td>Al, 1.75 Cu, 2 Mg, 7 Zn</td>
<td>WP</td>
<td>620</td>
<td>Sheet, extrusions. Aircraft construction</td>
</tr>
</tbody>
</table>

O = annealed, $\frac{1}{2}H$ = half hard, H = fully work hardened, M = as manufactured, W = solution treated only, WP = solution treated and precipitation hardened, T = solution heat treated and naturally aged.
Aluminium casting alloys

<table>
<thead>
<tr>
<th>Composition (%)</th>
<th>Condition</th>
<th>0.2% proof stress (N mm(^{-2}))</th>
<th>Tensile strength (N mm(^{-2}))</th>
<th>Elongation (%)</th>
<th>Hardness, BHN†</th>
<th>Machinability</th>
</tr>
</thead>
<tbody>
<tr>
<td>As cast alloys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu, 0.1, Mg 3–6, Si</td>
<td>Sand cast</td>
<td>60</td>
<td>160</td>
<td>5</td>
<td>50</td>
<td>Difficult</td>
</tr>
<tr>
<td>10–13, Fe 0.6, Mn</td>
<td>Chill cast</td>
<td>70</td>
<td>190</td>
<td>7</td>
<td>55</td>
<td>Difficult</td>
</tr>
<tr>
<td>0.5, Ni 0.1, Sn 0.05, Pb 0.1, Al balance</td>
<td>Die cast</td>
<td>120</td>
<td>280</td>
<td>2</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Cu 0.7–2.5, Mg 0.3, Si</td>
<td>Chill cast</td>
<td>100</td>
<td>180</td>
<td>1.5</td>
<td>85</td>
<td>Fair</td>
</tr>
<tr>
<td>9–11.5, Fe 1.0, Mn</td>
<td>Die cast</td>
<td>150</td>
<td>320</td>
<td>1</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>0.5, Ni 1.0, Zn 1.2, Al balance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat treatable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu 4–5, Mg 0.1, Si</td>
<td>Chill cast</td>
<td>—</td>
<td>300</td>
<td>9</td>
<td>—</td>
<td>Good</td>
</tr>
<tr>
<td>0.25, Fe 0.25, Mn</td>
<td>Fully heat treated</td>
<td>—</td>
<td>300</td>
<td>9</td>
<td>—</td>
<td>Good</td>
</tr>
<tr>
<td>0.1, Ni 0.1, Zn 0.1, Al balance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*These alloys are used for food, chemical plant, marine castings and hydraulics.
†BHN = Brinell hardness number.

6.7 Miscellaneous metals

Antimony

A brittle lustrous white metal used mainly as an alloying element for casting and bearing alloys and in solders.

Beryllium

A white metal similar in appearance to aluminium. Brittle at room temperature. Has many applications in the nuclear field and for electronic tubes. With copper and nickel it produces alloys with high strength and electrical conductivity. Beryllium iron has good corrosion and heat resistance.

Cadmium

A fairly expensive soft white metal like tin. Used for plating and electrical storage batteries. It has good resistance to water and saline atmospheres and is useful as plating for electrical parts since it takes solder readily.

Chromium

A steel-grey soft but brittle metal. Small traces of carbide give it extreme hardness. It is used extensively in alloys and for electroplating and is also used for electrical resistance wire and in magnet alloys.

Lead

A heavy, soft, ductile metal of low strength but with good corrosion resistance. It is used for chemical equipment, roofing, cable sheathing and radiation shielding. It is also used in alloys for solder and bearings.
Lead-tin alloys

These are used as 'soft solders', often with a little antimony for strength.

Tinman's solder Approximately 2 parts of tin to 1 part of lead. Used for electrical jointing and tinplate-can sealing.

Plumber's solder Approximately 2 parts of lead to 1 part of tin. Used for wiping lead pipe joints.

Type metal Contains about 25% tin, with lead and some antimony. Has negligible shrinkage.

Bearing metal Lead based 'white metal' contains lead, tin, antimony and copper, etc.

Magnesium

A very light metal, only one-quarter the weight of steel and two-thirds that of aluminium, but not easily cold worked. Usually alloyed with up to 10% aluminium and often small amounts of manganese, zinc and zirconium. Used for aircraft and internal combustion engine parts, nuclear fuel cans and sand and die castings. Magnesium and its alloys corrode less in normal temperatures than does steel.

Manganese

A silvery white hard brittle metal present in most steels. It is used in manganese bronze and high nickel alloys and to improve corrosion resistance in magnesium alloys.

Nickel

Nickel has high corrosion resistance. It is used for chemical plant, coating steel plate and electroplating as a base for chromium. Nickel is used for many steel, iron and non-ferrous alloys.

Nickel-base alloys

Monel Used for steam turbine blades and chemical plant. Composition: 68%Ni, 30%Cu, 2%Fe.

Inconel Good at elevated temperatures, e.g. for cooker heater sheaths. Composition: 80%Ni, 14%Cr, 6%Fe.

Nimonic A series of alloys based on 70–80%Ni, with small amounts of Ti, Co, Fe, Al and C. Has high resistance to creep and is used for gas turbine discs and blades, and combustion chambers. Strong up to 900 °C.

Platinum

A soft ductile white metal with exceptional resistance to corrosion and chemical attack. Platinum and its alloys are widely used for electrical contacts, electrodes and resistance wire.

Silver

A ductile malleable metal with exceptional thermal and electrical conductivity. It resists most chemicals but tarnishes in a sulphurous atmosphere. It is used for electrical contacts, plating, bearing linings and as an alloying element.

Tin

A low-melting-point metal with silvery appearance and high corrosion resistance. It is used for tinplate, bearing alloys and solder.

Titanium

An expensive metal with low density, high strength and excellent corrosion resistance. It is used in the aircraft industry, generally alloyed with up to 10% aluminium with some manganese, vanadium and tin. Titanium is very heat resistant.

Tungsten

A heavy refractory steel-grey metal which can only be produced in shapes by powder metallurgy (m.p. 3410 °C). It is used as an alloying element in tool and die steels and in tungsten carbide tool tips. It is also used in permanent magnets.

Zinc

Pure zinc has a melting point of only 400 °C so is good for die casting, usually with 1–2%Cu and 4%Al to increase strength. Used for carburettors, fuel pumps, door handles, toys, etc., and also for galvanizing sheet steel, nails and wire, and in bronze.
6.8 Spring materials

6.8.1 Carbon steels

Hard-drawn spring steel

Low cost; general purpose; low stress; low fatigue life. Temperatures below 120 °C. Tensile strength up to 1600 N mm⁻².

Piano (music) wire

Tougher than hard-drawn spring steel; high stress (tensile strength up to 2300 N mm⁻²); long fatigue life; used for 'small springs'. Temperatures below 120 °C.

Oil-tempered spring steel

General purpose springs; stress not too high; unsuitable for shock or impact loads. Popular diameter range 3–15 mm.

6.8.2 Alloy steels

Chrome-vanadium steel

Best for shock and impact loads. Available in oil-tempered and annealed condition. Used for internal combustion engine valve springs. Temperatures up to 220 °C.

Silicon–manganese steel

High working stress; used for leaf springs; temperatures up to 220 °C.

Silicon–chromium steel

Better than silicon–manganese; temperatures up to 220°C.

Stainless steels

Cold drawn; tensile strength up to 1200 N mm⁻². Temperatures from sub-zero to 290 °C, depending on type. Diameters up to 5 mm.

6.8.3 Non-ferrous alloys

Spring brass (70/30)

Low strength, but cheap and easily formed. Good electrical conductivity.

Phosphor bronze (5% Sn)

High strength, resilience, corrosion resistance and fatigue strength. Good electrical conductivity. Tensile strength 770 N mm⁻². Wire diameters 0.15–7 mm. Used for leaf and coil switch springs.

Beryllium–copper (2 ¹/₂%)

Formed in soft condition and hardened. High tensile strength. Used for current-carrying brush springs and contacts. Tensile strength 1300 N mm⁻².

Inconel

Nickel based alloy useful up to 370 °C. Exceedingly good corrosion resistance. Diameters up to 7 mm. Tensile strength up to 1300 N mm⁻².

6.8.4 Moduli of spring materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Modulus of rigidity, G, GN m⁻²</th>
<th>Modulus of elasticity, E, GNm⁻²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon steel</td>
<td>80</td>
<td>207</td>
</tr>
<tr>
<td>Chrome–vanadium steel</td>
<td>80</td>
<td>207</td>
</tr>
<tr>
<td>18/8 Stainless steel</td>
<td>63</td>
<td>193</td>
</tr>
<tr>
<td>70/30 Brass</td>
<td>38</td>
<td>103</td>
</tr>
<tr>
<td>Phosphor bronze</td>
<td>36</td>
<td>97</td>
</tr>
<tr>
<td>Beryllium–copper</td>
<td>40–48</td>
<td>110–128</td>
</tr>
<tr>
<td>Inconel</td>
<td>76</td>
<td>214</td>
</tr>
<tr>
<td>Monel</td>
<td>66</td>
<td>179</td>
</tr>
<tr>
<td>Nickel–silver</td>
<td>38</td>
<td>110</td>
</tr>
</tbody>
</table>
6.9 Powdered metals

Powdered metal technology is used widely to produce components which are homogeneous, have controlled density, are inclusion free and of uniform strength. They can be subject to secondary treatment such as forging, repressing, resintering, and heat treatment.

6.9.1 Process

(1) Production of metal powder, mixing for alloys and additives if required.
(2) Compacting in a shaped die with pressure of 400–800 N mm⁻² to give required density.
(3) Sintering at high temperatures to bond particles, e.g. 1100 °C for iron and 1600 °C for tungsten.
(4) Sizing and finishing.

6.9.2 Metals used

Iron and copper The most used metals.
High-melting-point metals For example, platinum and tungsten.
Aluminium Special atmosphere and lubricant required because of the formation of the oxide.
Tin bronze Used for ‘self-lubricating’ bearings.
Stainless steel Used for filters.

6.9.3 Advantages

(1) For use in alloys where metals are insoluble.
(2) For high-melting-point metals, e.g. tungsten.
(3) Virtually no waste.
(4) Little or no finishing required.
(5) Controlled density and strength.
(6) Relatively inexpensive production method.

6.10 Low-melting-point alloys

<table>
<thead>
<tr>
<th>Composition (%)</th>
<th>Melting point (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Sn</td>
</tr>
<tr>
<td>---</td>
<td>Sn</td>
</tr>
<tr>
<td>---</td>
<td>37.5</td>
</tr>
<tr>
<td>---</td>
<td>50.0</td>
</tr>
<tr>
<td>---</td>
<td>25.0</td>
</tr>
</tbody>
</table>
6.11 Miscellaneous information on metals

Physical properties of common engineering materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Application</th>
<th>Tensile strength (N mm⁻²)</th>
<th>E (GN m⁻²)</th>
<th>G (GN m⁻²)</th>
<th>v</th>
<th>α ($\times 10^6$ K⁻¹)</th>
<th>ρ (kg m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel 070M20</td>
<td>Structures, lightly stressed parts, bolts, brackets, levers</td>
<td>240</td>
<td>430</td>
<td>207</td>
<td>80</td>
<td>0.3</td>
<td>11</td>
</tr>
<tr>
<td>Steel 080M40</td>
<td>Shafts and machine details requiring strength and wear resistance</td>
<td>250–400</td>
<td>510–650</td>
<td>207</td>
<td>80</td>
<td>0.3</td>
<td>11</td>
</tr>
<tr>
<td>Steel 070M55</td>
<td>Gears, machine tools and hard parts</td>
<td>310–570</td>
<td>620–980</td>
<td>207</td>
<td>80</td>
<td>0.3</td>
<td>11</td>
</tr>
<tr>
<td>Steel 060A96</td>
<td>Springs</td>
<td>—</td>
<td>1300</td>
<td>207</td>
<td>80</td>
<td>0.3</td>
<td>11</td>
</tr>
<tr>
<td>Steel 331S40</td>
<td>Internal combustion engine valves</td>
<td>—</td>
<td>1100–1700</td>
<td>207</td>
<td>80</td>
<td>0.3</td>
<td>11</td>
</tr>
<tr>
<td>Aluminium alloy NS4</td>
<td>Plate, sheet and strip</td>
<td>60</td>
<td>170</td>
<td>70</td>
<td>27</td>
<td>0.32</td>
<td>23</td>
</tr>
<tr>
<td>Aluminium alloy NF8M</td>
<td>Forgings</td>
<td>130</td>
<td>280</td>
<td>70</td>
<td>27</td>
<td>0.32</td>
<td>23</td>
</tr>
<tr>
<td>Aluminium alloy HE15TB</td>
<td>Rolled sections</td>
<td>230</td>
<td>370</td>
<td>70</td>
<td>27</td>
<td>0.32</td>
<td>23</td>
</tr>
</tbody>
</table>
Physical properties of common engineering materials (continued)

<table>
<thead>
<tr>
<th>Material</th>
<th>Application</th>
<th>PS/YS</th>
<th>Tensile strength (N mm⁻²)</th>
<th>E (GN m⁻²)</th>
<th>G (GN m⁻²)</th>
<th>v</th>
<th>σ (× 10⁶ K⁻¹)</th>
<th>ρ (kg m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grey cast iron</td>
<td>Brittle. Castings not subject to heavy impact</td>
<td>—</td>
<td>150/400 (tension) 600/1200 (compression)</td>
<td>130</td>
<td>48</td>
<td>—</td>
<td>12</td>
<td>7200</td>
</tr>
<tr>
<td>Malleable cast iron blackheart</td>
<td>Foot pedals, small cast parts, bends before fracture</td>
<td>180</td>
<td>250 (tension) 780 (compression)</td>
<td>170</td>
<td>68</td>
<td>0.26</td>
<td>11</td>
<td>7350</td>
</tr>
<tr>
<td>Spheroidal graphite iron</td>
<td>Similar to malleable cast iron</td>
<td>240-420</td>
<td>380-740</td>
<td>170</td>
<td>68</td>
<td>0.26</td>
<td>11</td>
<td>7350</td>
</tr>
<tr>
<td>Brass, cold drawn</td>
<td>Bearings</td>
<td>—</td>
<td>168</td>
<td>100</td>
<td>34</td>
<td>0.32</td>
<td>20</td>
<td>8400</td>
</tr>
<tr>
<td>Phosphor bronze, rolled</td>
<td>Castings in contact with water. Non-magnetic springs</td>
<td>—</td>
<td>410</td>
<td>116</td>
<td>43</td>
<td>0.33</td>
<td>17</td>
<td>8800</td>
</tr>
<tr>
<td>Timber</td>
<td>Frames</td>
<td>—</td>
<td>3–5 (along grain) 35–60 (across grain)</td>
<td>8–16</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Fibre glass</td>
<td>Cowls, motor bodies</td>
<td>—</td>
<td>100 (tension) 150 (compression)</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>Acetal resin</td>
<td>Mouldings</td>
<td>—</td>
<td>70</td>
<td>4.7 (compression) 3.6* (tension)</td>
<td>0.35</td>
<td>13.5</td>
<td>1420</td>
<td></td>
</tr>
<tr>
<td>Nylon</td>
<td>Bearings</td>
<td>—</td>
<td>80</td>
<td>1.6*</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>1100</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>Mouled components</td>
<td>—</td>
<td>45 (tension) 110 (compression)</td>
<td>3*</td>
<td>—</td>
<td>—</td>
<td>70</td>
<td>1070</td>
</tr>
</tbody>
</table>

PS/YS = proof stress (N mm⁻²)/yield stress (N mm⁻²), E = Young’s modulus, G = shear modulus, v = Poisson’s ratio, σ = coefficient of linear expansion, ρ = density.

*Do not obey Hooke’s law.
Chemical symbols for metals and alloying elements

<table>
<thead>
<tr>
<th>Material</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>Al</td>
</tr>
<tr>
<td>Antimony</td>
<td>Sb</td>
</tr>
<tr>
<td>Arsenic</td>
<td>As</td>
</tr>
<tr>
<td>Barium</td>
<td>Ba</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Be</td>
</tr>
<tr>
<td>Bismuth</td>
<td>Bi</td>
</tr>
<tr>
<td>Carbon</td>
<td>C</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Cd</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Co</td>
</tr>
<tr>
<td>Chromium</td>
<td>Cr</td>
</tr>
<tr>
<td>Copper</td>
<td>Cu</td>
</tr>
<tr>
<td>Iron</td>
<td>Fe</td>
</tr>
<tr>
<td>Gallium</td>
<td>Ga</td>
</tr>
<tr>
<td>Germanium</td>
<td>Ge</td>
</tr>
<tr>
<td>Gold</td>
<td>Au</td>
</tr>
<tr>
<td>Mercury</td>
<td>Hg</td>
</tr>
<tr>
<td>Indium</td>
<td>In</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Mg</td>
</tr>
<tr>
<td>Manganese</td>
<td>Mn</td>
</tr>
<tr>
<td>Molybdenium</td>
<td>Mo</td>
</tr>
<tr>
<td>Nickel</td>
<td>Ni</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>P</td>
</tr>
<tr>
<td>Lead</td>
<td>Pb</td>
</tr>
<tr>
<td>Platinum</td>
<td>Pt</td>
</tr>
<tr>
<td>Plutonium</td>
<td>Pu</td>
</tr>
<tr>
<td>Radium</td>
<td>Ra</td>
</tr>
<tr>
<td>Rhodium</td>
<td>Rh</td>
</tr>
<tr>
<td>Silver</td>
<td>Ag</td>
</tr>
<tr>
<td>Selenium</td>
<td>Se</td>
</tr>
<tr>
<td>Silicon</td>
<td>Si</td>
</tr>
<tr>
<td>Sulphur</td>
<td>S</td>
</tr>
<tr>
<td>Tantalum</td>
<td>Ta</td>
</tr>
<tr>
<td>Tellurium</td>
<td>Te</td>
</tr>
<tr>
<td>Tin</td>
<td>Sn</td>
</tr>
<tr>
<td>Titanium</td>
<td>Ti</td>
</tr>
<tr>
<td>Tungsten</td>
<td>W</td>
</tr>
<tr>
<td>Uranium</td>
<td>U</td>
</tr>
<tr>
<td>Vanadium</td>
<td>V</td>
</tr>
<tr>
<td>Zinc</td>
<td>Zn</td>
</tr>
<tr>
<td>Zirconium</td>
<td>Zr</td>
</tr>
</tbody>
</table>

Typical Brinell hardness numbers (BHN) for metals

<table>
<thead>
<tr>
<th>Material</th>
<th>BHN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft brass</td>
<td>60</td>
</tr>
<tr>
<td>Mild steel</td>
<td>130</td>
</tr>
<tr>
<td>Annealed chisel steel</td>
<td>235</td>
</tr>
<tr>
<td>White cast iron</td>
<td>415</td>
</tr>
<tr>
<td>Nitrided surface</td>
<td>750</td>
</tr>
</tbody>
</table>

Comparison of hardness numbers

<table>
<thead>
<tr>
<th>Rockwell C scale</th>
<th>Vicker’s pyramid</th>
<th>Brinell hardness number</th>
<th>Rockwell C scale</th>
<th>Vicker’s pyramid</th>
<th>Brinell hardness number</th>
<th>Rockwell C scale</th>
<th>Vicker’s pyramid</th>
<th>Brinell hardness number</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>1030</td>
<td>—</td>
<td>49</td>
<td>515</td>
<td>468</td>
<td>30</td>
<td>299</td>
<td>286</td>
</tr>
<tr>
<td>67</td>
<td>975</td>
<td>—</td>
<td>48</td>
<td>500</td>
<td>458</td>
<td>29</td>
<td>291</td>
<td>279</td>
</tr>
<tr>
<td>66</td>
<td>935</td>
<td>—</td>
<td>47</td>
<td>485</td>
<td>447</td>
<td>28</td>
<td>284</td>
<td>272</td>
</tr>
<tr>
<td>65</td>
<td>895</td>
<td>—</td>
<td>46</td>
<td>470</td>
<td>436</td>
<td>27</td>
<td>277</td>
<td>266</td>
</tr>
<tr>
<td>64</td>
<td>860</td>
<td>—</td>
<td>45</td>
<td>456</td>
<td>426</td>
<td>26</td>
<td>271</td>
<td>260</td>
</tr>
<tr>
<td>63</td>
<td>830</td>
<td>—</td>
<td>44</td>
<td>442</td>
<td>416</td>
<td>25</td>
<td>265</td>
<td>255</td>
</tr>
<tr>
<td>62</td>
<td>800</td>
<td>—</td>
<td>43</td>
<td>430</td>
<td>406</td>
<td>24</td>
<td>260</td>
<td>250</td>
</tr>
<tr>
<td>61</td>
<td>770</td>
<td>—</td>
<td>42</td>
<td>418</td>
<td>396</td>
<td>23</td>
<td>255</td>
<td>245</td>
</tr>
<tr>
<td>60</td>
<td>740</td>
<td>—</td>
<td>41</td>
<td>406</td>
<td>386</td>
<td>22</td>
<td>250</td>
<td>240</td>
</tr>
<tr>
<td>59</td>
<td>715</td>
<td>609</td>
<td>40</td>
<td>395</td>
<td>376</td>
<td>21</td>
<td>245</td>
<td>235</td>
</tr>
<tr>
<td>58</td>
<td>690</td>
<td>594</td>
<td>39</td>
<td>385</td>
<td>366</td>
<td>20</td>
<td>240</td>
<td>230</td>
</tr>
<tr>
<td>57</td>
<td>670</td>
<td>579</td>
<td>38</td>
<td>375</td>
<td>356</td>
<td>19</td>
<td>220</td>
<td>210</td>
</tr>
<tr>
<td>56</td>
<td>650</td>
<td>564</td>
<td>37</td>
<td>365</td>
<td>346</td>
<td>18</td>
<td>200</td>
<td>190</td>
</tr>
<tr>
<td>55</td>
<td>630</td>
<td>549</td>
<td>36</td>
<td>355</td>
<td>337</td>
<td>17</td>
<td>180</td>
<td>171</td>
</tr>
<tr>
<td>54</td>
<td>610</td>
<td>534</td>
<td>35</td>
<td>345</td>
<td>328</td>
<td>16</td>
<td>160</td>
<td>152</td>
</tr>
<tr>
<td>53</td>
<td>590</td>
<td>519</td>
<td>34</td>
<td>335</td>
<td>319</td>
<td>15</td>
<td>140</td>
<td>133</td>
</tr>
<tr>
<td>52</td>
<td>570</td>
<td>504</td>
<td>33</td>
<td>325</td>
<td>310</td>
<td>14</td>
<td>120</td>
<td>114</td>
</tr>
<tr>
<td>51</td>
<td>550</td>
<td>492</td>
<td>32</td>
<td>315</td>
<td>302</td>
<td>13</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>50</td>
<td>532</td>
<td>480</td>
<td>31</td>
<td>307</td>
<td>294</td>
<td>12</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Properties of pure metals

<table>
<thead>
<tr>
<th>Metal</th>
<th>m.p. (°C)</th>
<th>(\rho) (kg m(^{-3}))</th>
<th>(E) (GN m(^{-2}))</th>
<th>(G) (GN m(^{-2}))</th>
<th>RSHC (\times 10^6) °C(^{-1})</th>
<th>(\rho_a) ((\mu \Omega \cdot \text{m}))</th>
<th>(a_r) (mΩ°C(^{-1}))</th>
<th>ECE (mg°C(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>659</td>
<td>2 700</td>
<td>70</td>
<td>27</td>
<td>0.21</td>
<td>23</td>
<td>245</td>
<td>450</td>
</tr>
<tr>
<td>Copper</td>
<td>1083</td>
<td>8 900</td>
<td>96</td>
<td>38</td>
<td>0.09</td>
<td>17</td>
<td>156</td>
<td>430</td>
</tr>
<tr>
<td>Gold</td>
<td>1063</td>
<td>19 300</td>
<td>79</td>
<td>27</td>
<td>0.03</td>
<td>14</td>
<td>204</td>
<td>400</td>
</tr>
<tr>
<td>Iron</td>
<td>1475</td>
<td>7 850</td>
<td>200</td>
<td>82</td>
<td>0.11</td>
<td>12</td>
<td>890</td>
<td>650</td>
</tr>
<tr>
<td>Lead</td>
<td>327</td>
<td>11 370</td>
<td>16</td>
<td>—</td>
<td>0.03</td>
<td>29</td>
<td>1900</td>
<td>420</td>
</tr>
<tr>
<td>Mercury</td>
<td>—</td>
<td>13 380</td>
<td>—</td>
<td>—</td>
<td>0.03</td>
<td>60</td>
<td>9410</td>
<td>100</td>
</tr>
<tr>
<td>Nickel</td>
<td>1452</td>
<td>8 800</td>
<td>198</td>
<td>—</td>
<td>0.11</td>
<td>13</td>
<td>614</td>
<td>680</td>
</tr>
<tr>
<td>Platinum</td>
<td>1775</td>
<td>20 040</td>
<td>164</td>
<td>51</td>
<td>0.03</td>
<td>9</td>
<td>981</td>
<td>390</td>
</tr>
<tr>
<td>Silver</td>
<td>961</td>
<td>10 530</td>
<td>78</td>
<td>29</td>
<td>0.06</td>
<td>19</td>
<td>151</td>
<td>410</td>
</tr>
<tr>
<td>Tungsten</td>
<td>3400</td>
<td>19 300</td>
<td>410</td>
<td>—</td>
<td>0.03</td>
<td>4.5</td>
<td>490</td>
<td>480</td>
</tr>
<tr>
<td>Zinc</td>
<td>419</td>
<td>6 860</td>
<td>86</td>
<td>38</td>
<td>0.09</td>
<td>30</td>
<td>550</td>
<td>420</td>
</tr>
</tbody>
</table>

m.p. = melting point, \(\rho \) = density, \(E \) = Young's modulus, \(G \) = shear modulus, RSHC = relative specific heat capacity, \(\alpha \) = coefficient of linear expansion, \(\rho_a \) = resistivity at 0°C, \(a_r \) = resistance temperature coefficient at 0°C, ECE = electrochemical equivalent.

6.12 Corrosion of metals

6.12.1 Corrosion prevention

Corrosion may be prevented by considering the following points.

Material selection

Metals and alloys which resist corrosion in a particular environment can be used. Proximity of metals with large potential difference, e.g. a copper pipe on a steel tank, should be avoided. Galvanic protection can be used, e.g. by use of a 'sacrificial anode' of zinc close to buried steel pipe or a ship's hull.

Appropriate design

Crevices which hold water, e.g. bad joints and incomplete welds, should be avoided as should high tensile stresses in material subject to stress corrosion. Locked-in internal stress due to forming should be avoided.

Modified environment

Metals can be enclosed against a corrosive atmosphere, water, etc. Drying agents, e.g. silica gel, and corrosion inhibitors, e.g. in central-heating radiators can be used.

Protective coating

Metals can be coated to make them impervious to the atmosphere, water, etc., by use of a coating of grease, plasticizer, bitumen, resins, polymers, rubber latex, corrosion-resistant paints or metal coating.

6.12.2 Corrosion resistance of metals

Ferrous metals

Stainless steels Generally the best of all metals. All types have good resistance to atmospheric corrosion except gases such as chlorine and sulphur. Some types are suitable up to 1100°C. Some resist sulphuric acid and some nitric acids, but not hydrochloric or hydrofluoric acids. All resist uncontaminated organic solvents and foods and also alkalies at room temperature, but not bleaches. They resist neutral water, but stress corrosion cracking may occur above 66°C.

Alloy steels Chrome steel has good resistance which is improved by the addition of nickel; it can be used in sea water. Iron–nickel steel has good resistance with over 20% nickel plus 2–3% carbon; it is used in a marine environment.

Iron and carbon steel These readily corrode in air and especially sea water. They are subject to stress corrosion cracking and internal stress corrosion, and
require protection by painting, plating, tinning, galvanizing, etc.

Copper and copper based alloys

Copper An oxide coating prevents corrosion from water and atmosphere, e.g. water pipes.

Brass 'Yellow brass' (>15%Zn) is subject to 'dezincification' in hot water. 'Red brass' (85%Cu minimum) is much better. Resistance is improved by the addition of arsenic or antimony.

Bronzes Over 5% tin gives better resistance than brass, especially to sea water and stress corrosion cracking. Aluminium bronze is good at elevated temperatures. Silicon bronze is as good but also has weldability; it is used for tanks.

Cupronickel This has the best resistance of all copper alloys and is used for heat-exchanger tubes.

Other metals and alloys

Nickel alloys These are generally extremely resistant to caustics up to high temperature, and to neutral water and sea water. They resist some acids. Alloys such as Inconel have good resistance up to 1170°C which increases with chromium content. Nickel alloys have high resistance to stress corrosion cracking. Different alloys have resistance to different acids. Nickel alloys are used for tanks, heat exchangers, furnace parts, and chemical plant.

Magnesium and magnesium alloys These have better resistance than steel in the atmosphere, but are inferior to aluminium. They corrode in salty air. They are fairly resistant to caustics, many solvents and fuels, but not to acids.

Titanium and titanium alloys These have excellent resistance to e.g. seawater and aqueous chloride solutions over a wide temperature range. Most alloys resist nitric acid. When alloyed with noble metals such as palladium they will resist reducing acids. These materials are high in the galvanic series and so should not be used with other metals.

Zinc An oxide film gives reasonable resistance to water and normal atmosphere.

Aluminium An oxide coating gives good resistance to water and atmosphere, but stress corrosion cracking occurs.

6.12.3 Stress corrosion cracking

Under tensile stress and in a corrosive environment some metals develop surface cracks called 'stress corrosion cracking' which is time dependent and may take months to develop. It is avoided by minimizing stress and/or improving the environment.

Environments causing stress corrosion cracking

<table>
<thead>
<tr>
<th>Material</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steels</td>
<td>Caustic solutions</td>
</tr>
<tr>
<td>Stainless steels</td>
<td>Chloride solutions</td>
</tr>
<tr>
<td>Aluminium and alloys</td>
<td>Chloride solutions</td>
</tr>
<tr>
<td>Copper alloys</td>
<td>Ammonia atmosphere, sometimes neutral water</td>
</tr>
<tr>
<td>Acrylics</td>
<td>Chlorinated solvents</td>
</tr>
</tbody>
</table>

6.12.4 Galvanic corrosion

For a pair of metals, that highest up the 'galvanic table' is the 'negative electrode' or 'cathode'; that lower down is the 'positive electrode' or 'anode'. The anode loses metal, i.e. corrodes, whilst the cathode remains unchanged. The greater the potential, the greater the rate of corrosion. Hydrogen is assumed to have zero potential.

Galvanic table for pure metals (relative to hydrogen)

<table>
<thead>
<tr>
<th>Metal</th>
<th>Potential difference (v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>NOBLE +1.70</td>
</tr>
<tr>
<td>Platinum</td>
<td>+0.86</td>
</tr>
<tr>
<td>Silver</td>
<td>+0.80</td>
</tr>
<tr>
<td>Copper</td>
<td>+0.34</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>0</td>
</tr>
<tr>
<td>Lead</td>
<td>-0.13</td>
</tr>
<tr>
<td>Tin</td>
<td>-0.14</td>
</tr>
<tr>
<td>Nickel</td>
<td>-0.25</td>
</tr>
<tr>
<td>Cadmium</td>
<td>-0.40</td>
</tr>
<tr>
<td>Iron</td>
<td>-0.44</td>
</tr>
<tr>
<td>Chromium</td>
<td>-0.74</td>
</tr>
<tr>
<td>Zinc</td>
<td>-0.76</td>
</tr>
<tr>
<td>Aluminium</td>
<td>-1.67</td>
</tr>
<tr>
<td>Magnesium</td>
<td>-2.34</td>
</tr>
<tr>
<td>Sodium</td>
<td>-2.71</td>
</tr>
<tr>
<td>Calcium</td>
<td>BASE -2.87</td>
</tr>
</tbody>
</table>

CATHODIC
6.13 Plastics

The term 'plastic' is used for materials based on polymers to which other materials are added to give the desired properties. 'Fillers' increase strength, 'plasticizers' reduce rigidity, and 'stabilizers' protect against ultraviolet radiation.

'Thermoplastic' polymers soften when heated and can be reshaped, the new shape being retained on cooling. The process can be repeated continuously.

Thermosetting polymers (or thermosets) cannot be softened and reshaped by heating. They are plastic at some stage of processing but finally set and cannot be resoftened. Thermosets are generally stronger and stiffer than thermoplastics.

6.13.1 Thermoplastics

Acetal and polyacetal

These combine very high strength, good temperature and abrasion resistance, exceptional dimensional stability and low coefficient of thermal expansion. They compete with nylon (but with many better properties) and with diecastings (but are lighter). Chemical resistance is good except for strong acids. Typical applications are water-pump parts, pipe fittings, washing machines, car instrument housings, bearings and gears.

Acrylics (methylmethacrylate, PMMA)

These are noted for their optical clarity and are available as sheet, rod, tubing, etc., as Perspex (UK) and Plexiglas (USA, Germany, etc.). They are hard and brittle and resistant to discolouring and weathering. Applications include optical lenses and prisms, transparent coverings, draughting instruments, reflectors, control knobs, baths and washbasins. They are available in a wide range of transparent and opaque colours.

Acrylonitrile–butadiene–styrene (ABS)

This combination of three materials gives a material which is strong, stiff and abrasion resistant with good properties, except out of doors, and ease of processing. The many applications include pipes, refrigerator liners, car-instrument surrounds, radiator grills, telephones, boat shells, and radio and television parts. Available in medium, high and very high impact grades.

Cellulose

'Cellulose nitrate' is inflammable and has poor performance in heat and sunlight. Its uses are currently limited. Cellulose acetate has good strength, stiffness and hardness and can be made self-extinguishing. Glass-filled grades are made. Cellulose acetobutyrate (CAB) has superior impact strength, dimensional stability and service temperature range and can be weather stabilized. Cellulose propionate (CP) is similar to CAB, but has better dimensional stability and can have higher strength and stiffness. Ethyl cellulose has better low-temperature strength and lower density than the others. Processing of cellulose plastics is by injection moulding and vacuum forming. Applications include all types of mouldings, electrical insulation, and toys.

Ethylene–vinyl acetate (EVA)

This material gives tough flexible mouldings and extrusions suitable for a wide temperature range. The material may be stiffened by the use of fillers and is also used for adhesives. Applications include all types of mouldings, disposable liners, shower curtains, gloves, inflatables, gaskets, and medical tubing. The material is considered competitive with polyvinyl chloride (PVC), polythene and synthetic rubbers, and is also used for adhesives and wax blends.

Fluorocarbons

These have outstanding chemical, thermal and electrical properties. The four main types are described below.
Polytetrafluoroethylenes (PTFE) ‘Teflon’ or ‘Fluon’, these are the best known types of PTFEs. PTFEs resist all known chemicals, weather and heat, have extremely low coefficients of friction, and are ‘non-stick’. They are inert, with good electrical properties. They are non-toxic, non-flammable and have a working temperature range of −270 °C to 260 °C. They may be glass filled for increased strength.

Applications include chemical, mechanical and electrical components, bearings (plain or filled with glass and/or bronze), tubing, and vessels for ‘aggressive’ chemicals.

Fluoroethylene-propylene (FEP) Unlike PTFE, this can be processed on conventional moulding machines and extruded, but the thermal and chemical properties are slightly less good.

Ethylene-tetrafluoroethylene (ETFE) The properties are similar to those of PTFE, with a thermoplasticity similar to that of polyethylene.

Perfluoroalkoxy (PFA) This has the same excellent properties as PTFE, but is melt processable and, therefore, suitable for linings for pumps, valves, pipes and pipe fittings.

Ionomers

These thermoplastics based on ethylene have high melt strength which makes them suitable for deep forming, blowing, etc. They are used for packaging, bottles, mouldings for small components, tool handles, trim, etc. They have a high acceptance of fillers.

Methylpentene (TPX)

This is a high clarity resin with excellent chemical and electrical properties and the lowest density of all thermoplastics. It has the best resistance of all transparent plastics to distortion at high temperature – it compares well with acrylic for optical use, but has only 70% of its density. It is used for light covers, medical and chemical ware, high frequency electrical insulation, cables, microwave-oven parts, and radar components. It can withstand soft soldering temperatures.

Polyethylene terephthalate (PETP)

This has good strength, rigidity, chemical and abrasion resistance and a very low coefficient of friction. It is attacked by acetic acid and strong nitric and sulphuric acids. It is used for bearings, tyre reinforcement, bottles, car parts, gears, and cams.

Polyamides (nylons)

These are a range of thermoplastics, e.g. Nylon 6, Nylon 66 and Nylon 610, which are among the toughest engineering plastics with high vibration-damping capacity, abrasion resistance and high load capacity for high-speed bearings. They have low coefficient of friction and good flexibility. Pigment-stabilized types are not affected by ultraviolet radiation and chemical resistance is good. Unfilled nylon is prone to swelling due to moisture absorption. Nylon bearings may be filled with molybdenum disulphide or graphite. Applications include bearings, electrical insulators, gears, wheels, screw fasteners, cams, latches, fuel lines and rotary seals.

Polyethylene

Low density polyethylene is generally called ‘polythene’ and is used for films, coatings, pipes, domestic mouldings, cable sheathing and electrical insulation. The high-density type is used for larger mouldings and is available in the form of sheet, tube, etc. Polyethylene is limited as an engineering material because of its low strength and hardness. It is attacked by many chemicals.

Polyethersulphone

This is a high-temperature engineering plastic – useful up to 180°C and some grades up to 200°C. It is resistant to most chemicals and may be extruded or injection moulded to close tolerances. The properties are similar to those of nyons. Applications are as a replacement for glass for medical needs and food handling, circuit boards, general electrical components, and car parts requiring good mechanical properties and dimensional stability.

Polypropylene oxide (PPO)

This is a useful engineering plastic with excellent mechanical, thermal and fatigue properties, low creep, and low moisture absorption. Filled grades can be used as alternatives to thermosts and some metals. Applications are light engineering parts, and car, aircraft and business components (especially for heat and flame resistance).
Polystyrene

This plastic is not very useful as an engineering material, but used for toys, electrical insulation, refrigerator linings, packaging and numerous commercial articles. It is available in unmodified form, in transparent form and opaque colours, high-impact form and extra-high-impact form, as well as in a heat-resistant grade. It can be stabilized against ultraviolet radiation and also made in expanded form. It is attacked by many chemicals and by ultraviolet light.

Polysulphone

This has similar properties to nylon but they are maintained up to 180 °C (120 °C for nylon). Its optical clarity is good and its moisture absorption lower than that of nylon. Applications are replacement for glass for medical needs and chemistry equipment, circuit boards, and many electrical components.

Polyvinyl chloride (PVC)

This is one the most widely used of all plastics. With the resin mixed with stabilizers, lubricants, fillers, pigments and plasticizers, a wide range of properties is possible from flexible to hard types, in transparent or opaque-colour form. It is tough, strong, with good resistance to chemicals, good low-temperature characteristics and flame-retardant properties. It is used for electrical conduit and trunking, junction boxes, rainwater pipes and gutters, decorative profile extrusions, tanks, guards, ducts, etc.

Polycarbonate

This is tough thermoplastic with outstanding strength, dimensional stability, and electrical properties, high heat distortion temperature and low temperature resistance (down to −100 °C). It is available in optical, translucent and opaque grades (many colours). Polycarbonates have good chemical resistance and weathering properties and can be stabilized against ultraviolet radiation. They are used for injection mouldings and blow extrusions for glazing panels, helmets, face shields, dashboards, window cranks, and gears. Polycarbonate is an important engineering plastic.

Polypropylene

This is a low density, hard, stiff, creep-resistant plastic with good resistance to chemicals, good wear resistance, low water absorption and of relatively low cost. Produced as filaments, weaves and in many other forms, polypropylene may be glass filled. It is used for food and chemical containers, domestic appliances, furniture, car parts, twine, toys, tubing, cable sheath, and bristles.

Polyphenylene sulphide

This is a high-temperature plastic useful up to 260 °C with room temperature properties similar to those of nylon. It has good chemical resistance and is suitable for structural components subject to heat. Glass filler improves strength and heat resistance. Uses are similar to those of nylon, but for high temperatures.

Polyphenylene oxide

This is a rigid engineering plastic similar to polysulphone in uses. It can be injection moulded and has mechanical properties the same as those for nylon. It is used for car parts, domestic appliances, and parts requiring good dimensional stability.

6.13.2 Thermosets

Alkyds

There are two main groups of alkyds: diallylphthalate (DAP) and diallylisophthalate (DIAP). These have good dimensional stability and heat resistance (service temperature 170 °C; intermittent use 260 °C), excellent electrical properties, good resistance to oils, fats and most solvents, but restricted resistance to strong acids and alkalis. The mechanical properties are improved by filling with glass or minerals. The main uses are for electrical components and encapsulation. A wide range of colours and fast-curing grades are available.

Amino resins

These are based on formaldehyde with urea or melamine formulated as coatings and adhesives for laminates, impregnated paper and textiles. Moulding powder is compounded with fillers of cellulose and wood flour, and extenders, etc. Composites with
open-weave fabric are used for building panels. Uses include domestic electrical appliances and electric light fittings; the melamine type is used for tableware. The strength is high enough for use in stressed components, but the material is brittle. Electrical, thermal and self-extinguishing properties are good.

Epoxies

These resins are used extensively. They can be cold cured without pressure using a 'hardener', or be heat cured. Inert fillers, plasticizers, flexibilizers, etc., give a wide range of properties from soft flexible to rigid solid materials. Bonding to wood, metal, glass, etc., is good and the mechanical, electrical and chemical properties are excellent. Epoxies are used in all branches of engineering, including large castings, electrical parts, circuit boards, potting, glass and carbon fibre structures, flooring, protective coatings and adhesives.

Epon resins

These can be formulated for surface coatings and have excellent adhesion, chemical resistance and flexibility. They are used for casting and potting materials, adhesives, structural laminates and foams.

Phenolics (phenol formaldehyde, PF)

PF is the original Bakelite and is usually filled with 50–70% wood flour for moulded non-stressed or lightly stressed parts. Other fillers are: mica for electrical parts; asbestos for heat resistance; glass fibre for strength and electrical properties; nylon; and graphite. Phenolics represent one of the best thermosets for low creep. Mouldings have good strength, good gloss and good temperature range (150 °C wood filled; intermittent use 220 °C), but are rather brittle. Applications include electrical circuit boards, gears, cams, and car brake linings (when filled with asbestos, glass, metal powder, etc.). The cost is low and the compressive strength very high.

Polyester

This can be cured at room temperature with a hardener or alone at 70–150 °C. It is used unfilled as a coating, for potting, encapsulation, linings, thread locking, castings, and industrial mouldings. It is used mostly for glass-reinforced-plastic (GRP) mouldings.

Polyimides

These are noted for their high resistance to oxidation and service temperatures of up to 250 °C (400 °C for intermittent use). The low coefficient of friction and high resistance to abrasion makes them ideal for non-lubricated bearings. Graphite or molybdenum disulphide filling improves these properties. They are used for high density insulating tape. Polyimides have high strength, low moisture absorption, and resist most chemicals, except strong alkalis and ammonia solutions.

Silicones

These may be cold or heat cured and are used for high-temperature laminates and electrical parts resistant to heat (heat distortion temperature 450 °C). Unfilled and filled types are used for special-duty mouldings. Organosilicones are used for surface coatings and as an adhesive between organic and non-organic materials.

6.13.3 Laminated plastics

These consist of layers of fibrous material impregnated with and bonded together by a thermosetting resin to produce sheet, bars, rods, tubes, etc. The laminate may be 'decorative' or 'industrial', the latter being of mechanical or electrical grade.

Phenolics

Phenolic plastics can be reinforced with paper, cotton fabric, asbestos paper fabric or felt, synthetic fabric, or wood flour. They are used for general-purpose mechanical and electrical parts. They have good mechanical and electrical properties.

Epoxies

These are used for high-performance mechanical and electrical duties. Fillers used are paper, cotton fabric and glass fibre.

Tufnol

'Tufnol' is the trade name for a large range of sheet, rod and tube materials using phenolic resin with paper and asbestos fabric, and epoxy resin with glass or fabric.
Polyester
This is normally used with glass fabric (the cheapest) filler. The mechanical and electrical properties are inferior to those of epoxy. It can be rendered in self-colours.

Melamine
Fillers used for melamine are paper, cotton fabric, asbestos paper fabric, and glass fabric. Melamines have a hard non-scratch surface, superior electrical properties and can be rendered in self-colours. They are used for insulators, especially in wet and dirty conditions, and for decorative and industrial laminates.

Silicone
This is used with asbestos paper and fabric and glass fabric fillers for high-temperature applications (250°C; intermittent use 300°C). It has excellent electrical but inferior mechanical properties.

Polyimide
This is used with glass fabric as filler. Polyimides have superior thermal and electrical properties with a service temperature as for silicones but with two to three times the strength and flexibility.

6.13.4 Foam and cellular plastics

Thermoplastics

Polyurethane foams The ‘flexible’ type is the one most used. It is ‘open cell’ and used for upholstery, underlays, thermal and vibration insulation, and buoyancy. It can be used in situ. The rigid type has ‘closed cells’ and is used for sandwich construction, insulation, etc. Moulded components are made from rigid and semi-rigid types.

Expanded polystyrene This is made only in rigid form with closed cells. It can be used in situ. The density is extremely low, as is the cost. Chemical resistance is low and the service temperature is only 70°C. It is used for packaging, thermal and acoustic insulation and buoyancy applications.

High-density polystyrene foam This has a porous core with a solid skin. It is used for structural parts.

Cellular polyvinyl chlorides (PVC) The low-density type is closed cell and flexible. It is used for sandwich structures, thermal insulation, gaskets, trim, buoyancy, and insulating clothing. The moderate to high density open-cell type is similar to latex rubber and is used as synthetic leather cloth. The rigid closed-cell type is used for structural parts, sandwich construction, thermal insulation and buoyancy. Rigid open-cell PVC (microporous PVC) is used for filters and battery separators. In general, cellular PVC has high strength and good fire resistance and is easy to work.

Polyethylene foams The flexible type is closed cell and has low density with good chemical resistance and colour availability, but is a poor heat insulator and costly. The flexible foams are used for vibration damping, packaging and gaskets. The rigid type has high density and is used for filters, cable insulation. A structural type has a solid skin and a foam core.

Ethylene vinyl acetates (EVA) These are microcellular foams similar to microcellular rubber foam, but are much lighter with better chemical resistance and colour possibilities.

Other types Other types of thermoplastics include: cellular acetate which is used as a core material in constructions; expanded acrylcs, which have good physical properties, thermal insulation and chemical resistance; expanded nylon (and expanded ABS) which are low-density, solid-skin constructions; expanded PVA which has similar properties to expanded polystyrene; and expanded polypropylene which gives high-density foams.

Thermosets

Phenolids These can be formed in situ. They have good rigidity, thermal insulation and high service temperature. They are brittle.

Urea formaldehyde (UF) foam This is readily formed in situ and has good thermal insulation. It has open pores and is used for cavity-wall filling.

Expanded epoxies These have limited use due to their high cost. They give a uniform texture and good dimensional stability, and are used for composite foams, e.g. with polystyrene beads.

Silicon foams These are rigid and brittle with a high service temperature (300°C; 400°C intermittent use). Their use is limited to high-temperature-resistant sandwich constructions. The flexible closed-cell type is
costly but will operate up to 200°C and is used for high-temperature seals and gaskets.

Elastomers

Cellular rubbers There are three types: 'sponge', solid rubber blown to give an open-cell structure; 'foam', a liquid rubber expanded to form open or closed cells and stiffer than sponge; and 'expanded', a solid rubber blown with mainly closed cells – it is stiffer than sponge. Uses include gaskets, seals, thermal insulation, cushioning, shock absorption, sound and vibration damping, buoyancy and sandwich constructions.

6.13.5 Properties of plastics

Typical physical properties of plastics

<table>
<thead>
<tr>
<th>Properties of plastics</th>
<th>ρ (kg m$^{-3}$)</th>
<th>Tensile strength (N mm$^{-2}$)</th>
<th>Elongation (%)</th>
<th>E (GN m$^{-2}$)</th>
<th>BHN</th>
<th>Machinability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermoplastics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVC rigid</td>
<td>1330</td>
<td>48</td>
<td>200</td>
<td>3.4</td>
<td>20</td>
<td>Excellent</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>1300</td>
<td>48</td>
<td>3</td>
<td>3.4</td>
<td>25</td>
<td>Fair</td>
</tr>
<tr>
<td>PTFE</td>
<td>2100</td>
<td>13</td>
<td>100</td>
<td>0.3</td>
<td></td>
<td>Excellent</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>1200</td>
<td>27</td>
<td>200–700</td>
<td>1.3</td>
<td>10</td>
<td>Excellent</td>
</tr>
<tr>
<td>Nylon</td>
<td>1160</td>
<td>60</td>
<td>90</td>
<td>2.4</td>
<td>10</td>
<td>Excellent</td>
</tr>
<tr>
<td>Cellulose nitrate</td>
<td>1350</td>
<td>48</td>
<td>40</td>
<td>1.4</td>
<td>10</td>
<td>Excellent</td>
</tr>
<tr>
<td>Cellulose acetate</td>
<td>1300</td>
<td>40</td>
<td>10–60</td>
<td>1.4</td>
<td>12</td>
<td>Excellent</td>
</tr>
<tr>
<td>Acrylic (Perspex)</td>
<td>1190</td>
<td>74</td>
<td>6</td>
<td>3.0</td>
<td>34</td>
<td>Excellent</td>
</tr>
<tr>
<td>Polythene (high density)</td>
<td>1450</td>
<td>20–30</td>
<td>20–100</td>
<td>0.7</td>
<td>2</td>
<td>Excellent</td>
</tr>
<tr>
<td>Thermosetting plastics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epoxy resin (glass filled)</td>
<td>1600–2000</td>
<td>68–200</td>
<td>4</td>
<td>20</td>
<td>38</td>
<td>Good</td>
</tr>
<tr>
<td>Melamine formaldehyde (fabric filled)</td>
<td>1800–2000</td>
<td>60–90</td>
<td>—</td>
<td>7</td>
<td>38</td>
<td>Fair</td>
</tr>
<tr>
<td>Urea formaldehyde (cellulose filled)</td>
<td>1500</td>
<td>38–90</td>
<td>1</td>
<td>7–10</td>
<td>51</td>
<td>Fair</td>
</tr>
<tr>
<td>Phenol formaldehyde (mica filled)</td>
<td>1600–1900</td>
<td>38–50</td>
<td>0.5</td>
<td>17–35</td>
<td>36</td>
<td>Good</td>
</tr>
<tr>
<td>Acetals (glass filled)</td>
<td>1600</td>
<td>58–75</td>
<td>2–7</td>
<td>7</td>
<td>27</td>
<td>Good</td>
</tr>
</tbody>
</table>

BHN = Brinell hardness number, ρ = density, E = Young's modulus.

Relative properties of plastics

<table>
<thead>
<tr>
<th>Material</th>
<th>Tensile strength</th>
<th>Compressive strength</th>
<th>Machining properties</th>
<th>Chemical resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermoplastics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nylon</td>
<td>E</td>
<td>G</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td>PTFE</td>
<td>F</td>
<td>G</td>
<td>E</td>
<td>O</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>F</td>
<td>F</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>E</td>
<td>G</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Rigid PVC</td>
<td>E</td>
<td>G</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td>Flexible PVC</td>
<td>F</td>
<td>P</td>
<td>P</td>
<td>G</td>
</tr>
</tbody>
</table>
Relative properties of plastics (continued)

<table>
<thead>
<tr>
<th>Material</th>
<th>Tensile strength</th>
<th>Compressive strength</th>
<th>Machining properties</th>
<th>Chemical resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermosetting plastics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epoxy resin (glass-fibre filled)</td>
<td>O</td>
<td>E</td>
<td>G</td>
<td>E</td>
</tr>
<tr>
<td>Formaldehyde (asbestos filled)</td>
<td>G</td>
<td>G</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>Phenol formaldehyde (Bakelite)</td>
<td>G</td>
<td>G</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Polyester (glass-fibre filled)</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>F</td>
</tr>
<tr>
<td>Silicone (asbestos filled)</td>
<td>O</td>
<td>G</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

O = outstanding, E = excellent, G = good, F = fair, P = poor.
Tensile strength (typical): E = 55 N mm\(^{-2}\); P = 21 N mm\(^{-2}\).
Compressive strength (typical): E = 210 N mm\(^{-2}\); P = 35 N mm\(^{-2}\).

6.14 Elastomers

Elastomers, or rubbers, are essentially amorphic polymers with linear chain molecules with some cross-linking which ensures elasticity and the return of the material to its original shape when a load is removed. They are characterized by large strains (typically 100%) under stress. The synthetic rubber styrene butadiene is the most used elastomer, with natural rubber a close second. The following describes the commonly used elastomers and gives some applications and properties.

6.14.1 Natural rubbers (polyisoprene, NR)

These have high strength, flexibility and resilience, but have poor resistance to fuels, oils, flame and sunlight ageing. They are more costly than synthetic rubbers which replace them. ‘Soft rubber’ contains 1–4% sulphur. Wear resistance is increased by inclusion of fillers such as carbon black, silicon dioxide, clay, and wood flour. ‘Hard rubber’ contains over 25% sulphur. Full vulcanization of 45% produces ebonite. Applications include vehicle tyres and tubes, seals, anti-vibration mountings, hoses and belts.

Shore hardness: 30–90. Temperature range: \(-55\) °C to \(82\) °C.

6.14.2 Synthetic rubbers

Styrene butadiene rubbers (SBR, GRS, BUNA S)

These are similar to natural rubbers in application, but are inferior in mechanical properties, although cheaper. They are used in car brake hydraulic systems and for hoses, belts, gaskets and anti-vibration mountings.

Shore hardness: 40–80. Temperature range: \(-50\) °C to \(82\) °C.

Butadiene rubbers (polybutadiene, BR)

These are used as substitutes for natural rubber, but are generally inferior. They have similar applications as natural rubber.
Shore hardness: 40–90. Temperature range: −100 °C to 93 °C.

Butyl rubbers (isobutylene isoprene, GR 1)

These are extremely resistant to water, silicon fluids and grease, and gas permeation. They are used for puncture-proof tyres, inner tubes and vacuum seals.

Shore hardness: 40–90. Temperature range: −45 °C to 150 °C.

Nitrile rubbers (butadiene acrylonitrile, BUNA N.NBR)

These have good physical properties and good resistance to fuels, oils, solvents, water, silicon fluids and abrasion. They are used for O rings and other seals, petrol hoses, fuel-pump diaphragms, gaskets and oil-resistant shoe soles.

Shore hardness: 40–95. Temperature range: −55 °C to 82 °C.

Neoprene rubbers (polychloroprene, chloroprene)

These are some of the best general-purpose synthetic rubbers. They have excellent resistance to weather ageing, moderate resistance to oils, and good resistance to refrigerants and mild acids.

Shore hardness: 30–95. Temperature range: −40 °C to 115 °C.

Chlorosulphonated polyethylene rubbers (CSM)

These have poor mechanical properties but good resistance to acids and heat with complete resistance to ozone. They are used for chemical plant, tank linings, and high-voltage insulation.

Shore hardness: 45–100. Temperature range: −100 °C to 93 °C.

Ethylene propylene rubbers (EP.FPM)

These are specialized rubbers especially resistant to weather ageing, heat, many solvents, steam, hot water, dilute acids and alkalis, and ketones, but not petrol or mineral oils. They are used for conveyor belts, limited car applications, silicone fluid systems, and electrical insulation.

Shore hardness: 40–90. Temperature range: −50 °C to 177 °C.

Fluorocarbon rubbers

These comprise a wide range of rubbers with excellent resistance to chemical attack, heat, acids, fuels, oils, aromatic compounds, etc. They have a high service temperature. They are particularly suitable for vacuum duties.

Shore hardness: 60–90. Temperature range: −23 °C to 260 °C.

Isoprenes (polyisoprene, IR)

These are chemically the same as natural rubber but are more costly. The properties and applications are similar to those of natural rubber.

Shore hardness: 40–80. Temperature range: −50 °C to 82 °C.

Polyacrylic rubbers (ACM, ABR)

This is a group of rubbers midway between nitrile and fluorocarbon rubbers with excellent resistance to mineral oils, hypoid oils and greases, and good resistance to hot air and ageing. The mechanical strength is low. They are used for spark-plug seals and transmission seals.

Shore hardness: 40–90. Temperature range: −30 °C to 177 °C.

Polysulphide rubbers

These have poor physical properties and heat resistance but good resistance to oils, solvents and weather ageing and are impermeable to gases and moisture. They are used for caulking and sealing compounds and as a casting material.

Shore hardness: 40–85. Temperature range: −50 °C to 121 °C.

Polyurethane rubbers

These have exceptional strength and tear and abrasion resistance (the best of all rubbers), low-temperature flexibility and good resistance to fuels, hydrocarbons, ozone and weather. Resistance to solutions of acids and alkalis, hot water, steam, glycol and ketones is poor. They are used for wear-resistant applications such as floor coverings.

Shore hardness: 35–100. Temperature range: −53 °C to 115 °C.
Silicone rubbers (SI)

These have exceptionally high service temperature ranges, but the mechanical properties and chemical resistance are poor. They cannot be used for fuels, light mineral oils, or high-pressure steam. They are used for high- and low-temperature seals, high-temperature rotary seals, cable insulation, hydraulic seals, and aircraft door and canopy seals.

Shore hardness: 30–90. Temperature range:
$-116^\circ C$ to $315^\circ C$ (380$^\circ C$ for intermittent use).

Fluorosilicone rubbers

These are similar to silicone rubbers but have better oil resistance and a lower temperature range.

Shore hardness: 40–80. Temperature range: $-64^\circ C$ to $204^\circ C$.

6.15 Wood

Permitted stresses in structural timbers (N mm$^{-2}$)

<table>
<thead>
<tr>
<th>Timber</th>
<th>Stress in horizontal shear stress (N mm$^{-2}$)</th>
<th>Stress parallel to grain (N mm$^{-2}$)</th>
<th>Stress perpendicular to grain (N mm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outside location</td>
<td>Dry location</td>
<td>All locations</td>
</tr>
<tr>
<td>Oak</td>
<td>8.3</td>
<td>9.7</td>
<td>0.9</td>
</tr>
<tr>
<td>Douglas fir</td>
<td>7.6</td>
<td>9.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Norway spruce</td>
<td>6.9</td>
<td>7.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Mechanical properties of timbers

<table>
<thead>
<tr>
<th>Wood</th>
<th>Moisture (%)</th>
<th>Density, ρ (kg m$^{-3}$)</th>
<th>Fibre stress at elastic limit (N mm$^{-2}$)</th>
<th>Modulus of elasticity, E (N mm$^{-2}$)</th>
<th>Modulus of rupture (N mm$^{-2}$)</th>
<th>Compressive strength parallel to grain (N mm$^{-2}$)</th>
<th>Shear strength (N mm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash</td>
<td>15</td>
<td>657</td>
<td>60</td>
<td>10 070</td>
<td>103</td>
<td>48</td>
<td>10</td>
</tr>
<tr>
<td>Beech</td>
<td>—</td>
<td>740</td>
<td>60–110</td>
<td>10 350</td>
<td>—</td>
<td>27–34</td>
<td>8–14</td>
</tr>
<tr>
<td>Birch</td>
<td>9–10</td>
<td>710</td>
<td>85–90</td>
<td>15 170</td>
<td>130–135</td>
<td>67–74</td>
<td>13–18.5</td>
</tr>
<tr>
<td>Elm, English</td>
<td>—</td>
<td>560</td>
<td>40–54</td>
<td>11 790</td>
<td>—</td>
<td>17–32</td>
<td>8–11.3</td>
</tr>
<tr>
<td>Elm, Dutch</td>
<td>—</td>
<td>560</td>
<td>42–60</td>
<td>7 720</td>
<td>—</td>
<td>18–32</td>
<td>7.2–10</td>
</tr>
<tr>
<td>Elm, Wych</td>
<td>—</td>
<td>690</td>
<td>65–100</td>
<td>7 860</td>
<td>—</td>
<td>29–47</td>
<td>7.3–11.4</td>
</tr>
<tr>
<td>Fir, Douglas</td>
<td>6–9</td>
<td>530</td>
<td>45–73</td>
<td>10 340–15 170</td>
<td>71–97</td>
<td>49–74</td>
<td>7.4–8.8</td>
</tr>
<tr>
<td>Mahogany</td>
<td>15</td>
<td>545</td>
<td>60</td>
<td>8 690</td>
<td>80</td>
<td>45</td>
<td>6.0</td>
</tr>
<tr>
<td>Oak</td>
<td>—</td>
<td>740</td>
<td>36–87</td>
<td>14 550</td>
<td>—</td>
<td>27–50</td>
<td>8–12</td>
</tr>
<tr>
<td>Poplar</td>
<td>—</td>
<td>450</td>
<td>40–43</td>
<td>7 240</td>
<td>—</td>
<td>20</td>
<td>4.8</td>
</tr>
<tr>
<td>Spruce, Norway</td>
<td>—</td>
<td>430</td>
<td>36–62</td>
<td>7 380–8 620</td>
<td>—</td>
<td>18–39</td>
<td>4.3–8</td>
</tr>
<tr>
<td>Sycamore</td>
<td>—</td>
<td>625</td>
<td>62–106</td>
<td>8 970–13 450</td>
<td>—</td>
<td>26–46</td>
<td>8.8–15</td>
</tr>
</tbody>
</table>
6.16 Adhesives

Adhesives are materials which are used to join solids (adherents) by means of a thin layer which adheres to the solids. At some stage the adhesive is liquid or plastic and sets to form a solid. In the final stage it may be rigid or flexible.

In engineering, joining by adhesives has in many cases replaced other methods such as soldering, brazing, welding, riveting and bolting.

Advantages of adhesive bonding
- Dissimilar materials may be joined, e.g. plastics to metal.
- Large bonding areas are possible.
- Uniform stress distribution and low stress concentration is obtained.
- Bonding is usually carried out at low temperature.
- The bond is generally permanent.
- A smooth finish is usually obtained.

Disadvantages of adhesive bonding
- A curing time, which may be long, is required for optimum strength.
- The adhesive may be flammable or toxic.
- The bond may be affected by the environment, e.g. heat, cold, or humidity.

Adhesives may be classified as follows:
1. natural adhesives,
2. elastomers,
3. thermoplastics,
4. thermosets, and
5. Other adhesives.

6.16.1 Natural adhesives

These are set by solvent evaporation. They are generally of low strength and are weakened by moisture and mould. They are restricted to joining low-strength materials.

Animal glues

These are made from collagen (from the bones and skins of animals) with sugar and glycerol added for increased flexibility. They are available in sheet (Scotch Glue), bead and powder forms, all of which dissolve in water at 60 °C, and also as a liquid with gelling inhibitors. Degradation occurs at about 100 °C. These glues have a long ‘pot life’ a long dry life and a ‘tacky’ stage useful for ‘initial set’. They will join wood, paper, leather, cloth and most porous materials.

Fish glues

These have similar applications to animal glues but are usually liquid at room temperature and have better resistance to water and a better recovery of strength on drying.

Vegetable glues

These are based on starch or dextrine from starch and are available either as a powder to be mixed with water or ready mixed. The shear strength is low but they are only used for paper and cardboard. Resistance to water and high temperatures is low.

Casein

This is a protein glue made from milk precipitated with acid. It is supplied as a powder to be mixed with water and is used for joining wood, paper, cloth and asbestos. Latex/casein is used for foil/paper laminations. Casein has better resistance to water and better strength than animal and fish glues. Other protein glues are made from blood, soya bean residue, etc.

6.16.2 Elastomer adhesives

These adhesives are based on natural and synthetic rubbers set by solvent evaporation or heat curing. They have relatively low shear strength and suffer from creep and are therefore used for unstressed joints. They are useful for flexible bonds with plastics and rubbers.

‘Contact adhesives’ use rubber in a solvent and will join many materials.
Natural rubbers

Solvent-type natural rubber adhesives have service temperatures up to 60°C, and hot-curing types are serviceable up to 90°C. The former may incorporate resin for improved strength (see later). Resistance to water is good, but resistance to oils and solvents is poor. Adherents include: natural rubber; some plastics such as acrylics and PTFE; expanded natural rubber, polystyrene and polyurethane; aluminium alloy, iron and steel; fabrics, card, leather, paper, wood; and glass and ceramics. Solutions are used for car upholstery, paper, fabric-backed PVC to hardboard, and floor coverings. The latex type is also used to adhere paper to plastics and metal. Reclaim rubber adhesives are used for car sound-proofing, draught excluding and undersealing. Pressure-sensitive adhesive is used for tapes, labels and gluing polythene sheet to metals.

Polyurethane adhesives

These are used for many plastics including PVC, polystyrene, and melamine. They have good strength at room temperature, excellent resistance to oils, acids, alkalis and many solvents, but poor resistance to water. They give a flexible bond suitable for resisting shock and vibration.

Polysulphide rubber adhesives

These have outstanding resistance to oils, solvents, light, air and heat, and will bond steel, aluminium, glass, concrete, ceramics and wood. Uses include sealants for fuel tanks, aircraft pressure cabins and windscreens, lights and pipe joints. With epoxy resins they are used for filling and sealing aluminium roof panels and car body panels.

Silicone rubber adhesives

These vulcanize at room temperature and bond a wide range of materials, including silicone rubber. The shear strength is up to 1.4 MN m⁻² at the maximum service temperature of 316°C. Although the strength is not high, they have excellent resistance to high temperatures. Formulation with epoxy resin gives good strength up to 340°C.

6.16.3 Thermoplastic adhesives

In general, these have a low shear strength and suffer from creep at high loading. They are therefore used in low-stress conditions. Resistance is good to oils and poor to good for water.

Polyvinyl acetate (PVA)

This is the well-known 'white glue' used for wood-working. It also bonds metals, glass, ceramics, leather and many plastics. The shear strength is good and the resistance high to oils and mould, but poor to heat and limited to water. Emulsion types are used for ceramic tiles. A fast-setting type is available.

Polyvinyl alcohol (PVA)

This is made from PVA and is similar to it. It is used for paper in a re-sealable form. Resistance to oils and greases is good, but poor to water.
Polyacrylates

These are generally used for textiles and the pressure-sensitive types are used for labels. Water-based acrylic sealants are available.

Polyester acrylics

These cure in the absence of air (anaerobic) and give an extremely strong bond for metals, glass, ceramic and many other materials. The shear strength may be as high as 14 MN m\(^{-2}\).

Acrylic solvent cement

This consists of polymethyl methacrylate (PMMA) dissolved in methyl chloride and is used for bonding PMMA to itself and to cellulosics, styrene, polycarbonate and rigid PVC. The shear strength is about 7 MN m\(^{-2}\) at 38°C.

Cyanoacrylates

These set in the presence of moisture (from the adherents) in several seconds to give an extremely high strength (up to 20 MN m\(^{-2}\)). They are used for the rapid assembly of small components, metal to metal, and metal to non-metal joints, but not for porous materials since voids are not filled.

Silicone resins

These will bond fluorocarbons. They have low strength but a high service temperature. They can be formulated with other adhesives to give higher strength.

Polyamides

These are applied hot and set on cooling. They bond metals, wood, plastics, leather and laminates. The chemical resistance is the same as that for nylon.

Acrylic acid diesters

These are anaerobic adhesives used for e.g. nut locking and as a gasket cement. Their performance is satisfactory up to 150°C.

6.16.4 Thermoset adhesives

These adhesives set as a result of the build-up of molecular chain length to give rigid cross-linked matrices. They include epoxy resins, which are some of the most widely used adhesives.

Phenolic formaldehyde (PF) resins

These are widely used in woodworking especially for plywood, and have excellent resistance to water, oils, solvents, etc. They will bond fluorocarbons, nylons and epoxy resin. Engineering adhesives are based on mixtures with other resins.

Phenolic neoprene

This is a heat-curing adhesive good for bonding metal to metal and metal to wood with a strength of 20 MN m\(^{-2}\).

Phenolic nitrile

This is a hot-curing adhesive with a shear strength of 28 MN m\(^{-2}\) at a service temperature of 175°C. It is used for metal to non-metal joints such as car brake linings.

Phenolic polyamides

These are usually available as a thermoplastic polyamide film and phenolic resin solution. The shear strength is up to 35 NM m\(^{-2}\).

Phenolic vinyls

These have a high strength (up to 35 NM m\(^{-2}\)), but are not very useful above 100°C. They are used for bonding honeycomb sandwich constructions, metal to metal and rubber to metal.

Resorcinol formaldehydes (RF)

These are used for wood and have superior strength, water resistance and temperature resistance compared with PF adhesives. They bond acrylics, nylons, phenolics and urea plastics.
Polyesters (unsaturated)

These have limited use and are unsuitable for glass-reinforced plastic. They bond copper, copper alloys, most fabrics, PVC, polyester films and polystyrene (in certain cases).

Polyimides

These cure at 260–370 °C and require post-curing for maximum strength which is retained up to 400 °C. These structural adhesives will bond metals, but the cost is high.

Epoxy resins

These adhesives are available as a two-part mixture (resin and hardener) for self-curing at room temperature or as one part for heat curing. Curing can take from 5 min (two-part) to 24 h (one-part). They bond metal, glass, ceramics, wood, many rubbers and some plastics. They have excellent resistance to oils and good resistance to water and most solvents. The shear strength is up to 35 MN m⁻².

Epoxy phenolics

These have an increased service temperature with 50% strength at 200 °C and are useful up to 565 °C, with low creep. They are useful in the car industry.

Epoxy polyamides

These have improved flexibility and peel strength, but relatively low shear strength.

Epoxy polysulphides

These have improved peel strength and flexibility, with a shear strength of 28 MN m⁻².

Epoxy silicones

These have the best heat resistance (up to 300 °C) and a shear strength of 14 MN m⁻². They are used for bonding metals and laminates.

Phenolic polyvinylacetates

These set under pressure and at elevated temperatures. They have good strength and good resistance to water, oils and solvents.

Redux adhesive

This is a mixture of polyvinyl formal powder and phenol formaldehyde liquid resin which gives a strong metal-to-metal joint that is better than riveting and spot-welding. It is normally useful up to 80 °C, but can be formulated to 250 °C.

6.16.5 Other adhesives

Sodium silicate

Known as ‘water glass’, this is a cheap, colourless adhesive used for bonding aluminium foil to paper, insulating materials to walls and for dry-mould bonding.

Ceramic adhesive

This is typically borosilicate glass compounded with alkaline earths and oxides of alkaline metals set by firing at 700–1200 °C. It is used for metal-to-metal joints.

Bitumen

This is a substance derived from coal and lignite. It is used in solution or as a hot melt in the car industry and for roofing and tiles.

6.16.6 Maximum and minimum service temperatures for adhesives

<table>
<thead>
<tr>
<th>Adhesive</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
</tr>
<tr>
<td>Cyanoacrylate</td>
<td>—</td>
</tr>
<tr>
<td>Epoxy</td>
<td>—</td>
</tr>
<tr>
<td>Epoxy phenolic</td>
<td>—</td>
</tr>
<tr>
<td>Epoxy polyamide</td>
<td>—</td>
</tr>
<tr>
<td>Epoxy polysulphide</td>
<td>—</td>
</tr>
<tr>
<td>Epoxy silicone</td>
<td>—</td>
</tr>
<tr>
<td>Natural rubber</td>
<td>—40</td>
</tr>
<tr>
<td>Natural rubber</td>
<td>—30</td>
</tr>
<tr>
<td>(vulcanized)</td>
<td></td>
</tr>
<tr>
<td>Neoprene</td>
<td>—50</td>
</tr>
<tr>
<td>Nitrile</td>
<td>—50</td>
</tr>
<tr>
<td>Polyurethane</td>
<td>—200</td>
</tr>
</tbody>
</table>
6.16.7 Complementary adhesives and adherents*

<table>
<thead>
<tr>
<th>Adhesive</th>
<th>Natural rubber</th>
<th>Acrylic</th>
<th>Silicone rubber</th>
<th>Polyurethane</th>
<th>Polytetrafluoroethylene</th>
<th>Cellulose nitrate</th>
<th>Polystyrene</th>
<th>Polyurea</th>
<th>Polyamide</th>
<th>Melamine</th>
<th>Polyamide (nylon)</th>
<th>Polylactic acid</th>
<th>Polycarbonate</th>
<th>Polystyrene</th>
<th>Polyvinyldiene</th>
<th>Thermosets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td></td>
</tr>
<tr>
<td>Glass ceramics</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td>x x</td>
<td></td>
</tr>
<tr>
<td>Leather</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Textiles, felt</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Note: in general, any two adherends may be bonded together if the chart shows that they are compatible with the same adhesive.
6.16.8 Typical shear strength of adhesives

<table>
<thead>
<tr>
<th>Adhesive</th>
<th>Shear strength (N mm(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy</td>
<td>35</td>
</tr>
<tr>
<td>Filled epoxy</td>
<td>14–21</td>
</tr>
<tr>
<td>Epoxy polyamide</td>
<td>25</td>
</tr>
<tr>
<td>Epoxy nylon</td>
<td>42</td>
</tr>
<tr>
<td>Epoxy polysulphide</td>
<td>20–28</td>
</tr>
<tr>
<td>Epoxy silicone</td>
<td>10–14</td>
</tr>
<tr>
<td>Neoprene</td>
<td>2</td>
</tr>
<tr>
<td>Nitrile</td>
<td>7</td>
</tr>
<tr>
<td>Phenolic neoprene</td>
<td>14–20</td>
</tr>
<tr>
<td>Phenolic nitrile</td>
<td>28</td>
</tr>
<tr>
<td>Phenolic polyamide</td>
<td>35</td>
</tr>
<tr>
<td>Phenolic vinyl</td>
<td>35</td>
</tr>
<tr>
<td>Polyvinyl acetate</td>
<td>20</td>
</tr>
<tr>
<td>Polyimide</td>
<td>14–18</td>
</tr>
<tr>
<td>Polyurethane</td>
<td>4–10</td>
</tr>
<tr>
<td>Silicone (unmodified)</td>
<td>14</td>
</tr>
</tbody>
</table>

6.16.9 Joints for adhesives

Lap joints

- Single lap
- Joggle lap
- Tapered lap
- Butt lap
- Scarf lap
- Butt scarf lap

Joints with increased bond area

- Double lap
- Double butt strap
- Slotted
- Right-angle butt
- Slotted-angle butt
- Right-angle butt support
- Angle pieces

Angle pieces increase the bonded area and thus reduce the cleavage stress.
6.17 Composites

A composite is a material consisting of two (or more) different materials bonded together, one forming a ‘matrix’ in which are embedded fibres or particles that increase the strength and stiffness of the matrix material.

A natural composite is wood in which cellulose fibres are embedded in a lignin matrix. Concrete is a composite in which particles of stone add strength with a further increase in strength provided by steel reinforcing rods. Vehicle tyres consist of rubber reinforced with woven cords.

Plastics are reinforced with glass, carbon and other fibres. The fibres may be unidirectional, woven or random chopped. Metals, carbon and ceramics are also used as matrix materials.

So-called ‘whiskers’, which are single crystals of silicon carbide, silicon nitride, sapphire, etc., give extremely high strength.

6.17.1 Elastic modulus of a composite (continuous fibres in direction of load)

Let:

\[E_f = \text{modulus of fibres} \]
\[E_m = \text{modulus of matrix} \]
\[E_c = \text{modulus of composite} \]

\[r = \frac{\text{(cross-sectional area of fibres)}}{\text{(total cross-sectional area)}} \]

\[E_c = rE_f + (1-r)E_m \]

6.17.2 Acronyms for composites

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRP</td>
<td>Fibre-reinforced plastic</td>
</tr>
<tr>
<td>FRT</td>
<td>Fibre-reinforced thermoplastic</td>
</tr>
<tr>
<td>GRP</td>
<td>Glass-reinforced plastic</td>
</tr>
<tr>
<td>GRC</td>
<td>Glass-reinforced composite</td>
</tr>
<tr>
<td>CFC</td>
<td>Carbon fibre composite</td>
</tr>
<tr>
<td>CFRP</td>
<td>Carbon-fibre-reinforced plastic</td>
</tr>
<tr>
<td>CFRT</td>
<td>Carbon-fibre-reinforced thermoplastic</td>
</tr>
</tbody>
</table>

6.17.3 Forms of fibres for composites

<table>
<thead>
<tr>
<th>Type</th>
<th>Arrangement</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidirectional</td>
<td></td>
<td>Load taken in direction of fibres. Weak at right angles to fibres</td>
</tr>
<tr>
<td>Bidirectional</td>
<td></td>
<td>Takes equal load in both directions. Weaker since only half the fibres used in each direction</td>
</tr>
</tbody>
</table>
Arrangement of fibres in composites (continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>Arrangement</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multidirectional</td>
<td></td>
<td>Load capacity much reduced but can take load in any direction in plane of fibres</td>
</tr>
<tr>
<td>Woven mat</td>
<td></td>
<td>Similar to bidirectional type but easy to handle</td>
</tr>
<tr>
<td>Random, chopped</td>
<td></td>
<td>Low in strength but multidirectional. Has handling advantages</td>
</tr>
</tbody>
</table>

6.17.4 Matrix materials for composites

Polymers: epoxies, polyesters, phenolics, silicones, polyimides, and other high-temperature polymers.

Thermoplastics: Perspex, nylon, etc.

Miscellaneous: metals, carbon, ceramics.

6.17.5 Properties of some fibres, wires and whiskers

<table>
<thead>
<tr>
<th>Material</th>
<th>Type</th>
<th>Density, ρ (kg m$^{-3}$)</th>
<th>Young's modulus, E (GN m$^{-2}$)</th>
<th>Tensile strength (N mm$^{-2}$)</th>
<th>Filament diameter, α (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E glass</td>
<td>Fibre</td>
<td>2500</td>
<td>62</td>
<td>3500</td>
<td>2.5</td>
</tr>
<tr>
<td>Carbon</td>
<td>Fibre</td>
<td>2000</td>
<td>415</td>
<td>1750</td>
<td>7.5</td>
</tr>
<tr>
<td>Silica</td>
<td>Fibre</td>
<td>2500</td>
<td>72</td>
<td>6000</td>
<td>5.0</td>
</tr>
<tr>
<td>18/8 Stainless steel</td>
<td>Wire</td>
<td>7900</td>
<td>205</td>
<td>2100</td>
<td>150</td>
</tr>
<tr>
<td>Tungsten</td>
<td>Wire</td>
<td>19300</td>
<td>350</td>
<td>2900</td>
<td>150</td>
</tr>
<tr>
<td>Tungsten</td>
<td>Wire</td>
<td>19300</td>
<td>350</td>
<td>3800</td>
<td>25</td>
</tr>
<tr>
<td>Graphite</td>
<td>Whisker</td>
<td>2200</td>
<td>675</td>
<td>21000</td>
<td>—</td>
</tr>
<tr>
<td>Sapphire (Al$_2$O$_3$)</td>
<td>Whisker</td>
<td>4000</td>
<td>525</td>
<td>6000</td>
<td>—</td>
</tr>
<tr>
<td>Silicon carbide</td>
<td>Whisker</td>
<td>3200</td>
<td>690</td>
<td>21000</td>
<td>—</td>
</tr>
<tr>
<td>Silicon nitride</td>
<td>Whisker</td>
<td>3100</td>
<td>380</td>
<td>14000</td>
<td>—</td>
</tr>
</tbody>
</table>
6.18 Ceramics

Aluminium oxide (alumina)

<table>
<thead>
<tr>
<th>% Al<sub>2</sub>O<sub>3</sub></th>
<th>75</th>
<th>86-94</th>
<th>94-98</th>
<th>>98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg m<sup>-3</sup>)</td>
<td>3200</td>
<td>3300</td>
<td>3500</td>
<td>3700</td>
</tr>
<tr>
<td>Hardness (Moh scale)</td>
<td>8.5</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Compressive strength (N mm<sup>-2</sup>)</td>
<td>1250</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
</tr>
<tr>
<td>Flexural strength (N mm<sup>-2</sup>)</td>
<td>270</td>
<td>290</td>
<td>350</td>
<td>380</td>
</tr>
<tr>
<td>Max. working temperature (°C)</td>
<td>800</td>
<td>1100</td>
<td>1500</td>
<td>1600</td>
</tr>
</tbody>
</table>

Silicon nitride

<table>
<thead>
<tr>
<th>Type</th>
<th>Reaction sintered</th>
<th>Hot pressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg m<sup>-3</sup>)</td>
<td>2 300–2 600</td>
<td>3 120–3 180</td>
</tr>
<tr>
<td>Open porosity (%)</td>
<td>18–28</td>
<td>0.1</td>
</tr>
<tr>
<td>Hardness (Moh scale)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Young's modulus (N mm<sup>-2</sup>)</td>
<td>160 000</td>
<td>290 000</td>
</tr>
<tr>
<td>Flexural strength (N mm<sup>-2</sup>)</td>
<td>at 20 °C</td>
<td>110–175</td>
</tr>
<tr>
<td>at 1200 °C</td>
<td>210</td>
<td>350–480</td>
</tr>
</tbody>
</table>

6.19 Cermets

Cermets consist of powdered ceramic material in a matrix of metal, combining the hardness and strength of ceramic with the ductility of the metal to produce a hard, strong, yet tough, combination; the process involves compaction and sintering.

Typical cermets and applications

<table>
<thead>
<tr>
<th>Ceramic</th>
<th>Matrix</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tungsten carbide</td>
<td>Cobalt</td>
<td>Cutting-tool bits</td>
</tr>
<tr>
<td>Titanium carbide</td>
<td>Molybdenum, cobalt or tungsten</td>
<td></td>
</tr>
<tr>
<td>Molybdenum carbide</td>
<td>Cobalt</td>
<td>Dies</td>
</tr>
<tr>
<td>Silicon carbide</td>
<td>Cobalt or chromium</td>
<td></td>
</tr>
</tbody>
</table>
Typical cermets and applications (continued)

<table>
<thead>
<tr>
<th>Ceramic</th>
<th>Matrix</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium oxide</td>
<td>Cobalt, iron or chromium</td>
<td>High-temperature components</td>
</tr>
<tr>
<td>Magnesium oxide</td>
<td>Magnesium, aluminium, cobalt, iron or nickel</td>
<td>Rocket and jet engine parts</td>
</tr>
<tr>
<td>Chromium oxide</td>
<td>Chromium</td>
<td>Disposable tool bits</td>
</tr>
<tr>
<td>Uranium oxide</td>
<td>Stainless steel</td>
<td>Nuclear fuel elements</td>
</tr>
<tr>
<td>Titanium boride</td>
<td>Cobalt or nickel</td>
<td></td>
</tr>
<tr>
<td>Chromium boride</td>
<td>Nickel</td>
<td>Mainly as cutting tool tips</td>
</tr>
<tr>
<td>Molybdenum boride</td>
<td>Nickel or nickel–chromium alloy</td>
<td></td>
</tr>
</tbody>
</table>

6.20 Materials for special requirements

<table>
<thead>
<tr>
<th>High-strength metals</th>
<th>Malleable metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>High carbon steel</td>
<td>Gold</td>
</tr>
<tr>
<td>Tool steel, carbon or alloy</td>
<td>Silver</td>
</tr>
<tr>
<td>Spring steel</td>
<td>Lead</td>
</tr>
<tr>
<td>Nickel steel</td>
<td>Palladium</td>
</tr>
<tr>
<td>High tensile steel</td>
<td>Rhodium</td>
</tr>
<tr>
<td>Chrome-molybdenum steel</td>
<td>Tantalum</td>
</tr>
<tr>
<td>Nickel–chrome–molybdenum steel</td>
<td>Vanadium</td>
</tr>
<tr>
<td>18% nickel maraging steels</td>
<td></td>
</tr>
<tr>
<td>Phosphor bronze</td>
<td></td>
</tr>
<tr>
<td>Aluminium bronze</td>
<td></td>
</tr>
<tr>
<td>Beryllium copper</td>
<td></td>
</tr>
<tr>
<td>High-strength aluminium alloys</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>High temperature metals</td>
<td></td>
</tr>
<tr>
<td>Tungsten</td>
<td>Stainless steels (especially austenitic)</td>
</tr>
<tr>
<td>Tantalum</td>
<td>Cupronickel</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Monel</td>
</tr>
<tr>
<td>Chromium</td>
<td>Titanium and alloys</td>
</tr>
<tr>
<td>Vanadium</td>
<td>Pure aluminium</td>
</tr>
<tr>
<td>Titanium</td>
<td>Nickel</td>
</tr>
<tr>
<td>Nimonic alloys</td>
<td>Lead</td>
</tr>
<tr>
<td>Stellite</td>
<td>Tin</td>
</tr>
<tr>
<td>Hastelloy</td>
<td>Mechanite (cast iron)</td>
</tr>
<tr>
<td>Inconel</td>
<td></td>
</tr>
<tr>
<td>Stainless steel</td>
<td></td>
</tr>
<tr>
<td>Nichrome</td>
<td></td>
</tr>
<tr>
<td>Heat-resisting alloy steels</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Corrosion-resistant metals

	Stainless steels (especially austenitic)
	Cupronickel
	Monel
	Titanium and alloys
	Pure aluminium
	Nickel
	Lead
	Tin
	Mechanite (cast iron)

Solders

<p>| | |
| | |
| | Lead–tin |
| | Pure tin |
| | Lead–tin–cadmium |
| | Lead–tin–antimony |
| | Silver solder |
| | Aluminium solder |</p>
<table>
<thead>
<tr>
<th>Coating metals</th>
<th>Metals with high electrical resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>Advance (Cu, Ni)</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Constantan or Eureka (Cu, Ni)</td>
</tr>
<tr>
<td>Chromium</td>
<td>Manganin (Cu, Mn, Ni)</td>
</tr>
<tr>
<td>Nickel</td>
<td>Nichrome (Ni, Cr)</td>
</tr>
<tr>
<td>Gold</td>
<td>Platinoid</td>
</tr>
<tr>
<td>Silver</td>
<td>Mercury</td>
</tr>
<tr>
<td>Platinum</td>
<td>Bismuth</td>
</tr>
<tr>
<td>Tin</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
</tr>
<tr>
<td>Brass</td>
<td></td>
</tr>
<tr>
<td>Bronze</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td></td>
</tr>
</tbody>
</table>

Brazing metals

<table>
<thead>
<tr>
<th>Brazing metals</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper, zinc (spelter)</td>
<td></td>
</tr>
<tr>
<td>Copper, zinc, tin</td>
<td></td>
</tr>
<tr>
<td>Silver, copper, zinc, cadmium (Easy-flo)</td>
<td></td>
</tr>
<tr>
<td>Silver, copper eutectic</td>
<td></td>
</tr>
<tr>
<td>Silver, copper, zinc</td>
<td></td>
</tr>
<tr>
<td>Silver, copper, phosphorus</td>
<td></td>
</tr>
<tr>
<td>Gold alloys</td>
<td></td>
</tr>
<tr>
<td>Palladium alloys</td>
<td></td>
</tr>
<tr>
<td>Pure gold, silver, palladium and platinum</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Good conductors of electricity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td></td>
</tr>
<tr>
<td>Gold</td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
</tr>
<tr>
<td>Brass</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td></td>
</tr>
<tr>
<td>Phosphor bronze</td>
<td></td>
</tr>
<tr>
<td>Beryllium copper</td>
<td></td>
</tr>
</tbody>
</table>

Permanent-magnet materials

<table>
<thead>
<tr>
<th>Permanent-magnet materials</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alnico I</td>
<td></td>
</tr>
<tr>
<td>Alnico II</td>
<td></td>
</tr>
<tr>
<td>Alnico V</td>
<td></td>
</tr>
<tr>
<td>Cobalt steel 35%</td>
<td></td>
</tr>
<tr>
<td>Tungsten steel 6%</td>
<td></td>
</tr>
<tr>
<td>Chrome steel 3%</td>
<td></td>
</tr>
<tr>
<td>Electrical sheet steel 1% Si</td>
<td></td>
</tr>
<tr>
<td>Barium ferrite</td>
<td></td>
</tr>
</tbody>
</table>

Metals with high electrical resistance

<table>
<thead>
<tr>
<th>Metals with high electrical resistance</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance (Cu, Ni)</td>
<td></td>
</tr>
<tr>
<td>Constantan or Eureka (Cu, Ni)</td>
<td></td>
</tr>
<tr>
<td>Manganin (Cu, Mn, Ni)</td>
<td></td>
</tr>
<tr>
<td>Nichrome (Ni, Cr)</td>
<td></td>
</tr>
<tr>
<td>Platinoid</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td></td>
</tr>
</tbody>
</table>

Good electrical insulators

<table>
<thead>
<tr>
<th>Good electrical insulators</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermoplastics</td>
<td></td>
</tr>
<tr>
<td>Thermosetting plastics</td>
<td></td>
</tr>
<tr>
<td>Glass</td>
<td></td>
</tr>
<tr>
<td>Mica</td>
<td></td>
</tr>
<tr>
<td>Transformer oil</td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
</tr>
<tr>
<td>Ceramics</td>
<td></td>
</tr>
<tr>
<td>Soft natural and synthetic rubber</td>
<td></td>
</tr>
<tr>
<td>Hard rubber</td>
<td></td>
</tr>
<tr>
<td>Silicone rubber</td>
<td></td>
</tr>
<tr>
<td>Shellac</td>
<td></td>
</tr>
<tr>
<td>Paxolin</td>
<td></td>
</tr>
<tr>
<td>Tufnol</td>
<td></td>
</tr>
<tr>
<td>Ebonite</td>
<td></td>
</tr>
<tr>
<td>Insulating papers, silks, etc.</td>
<td></td>
</tr>
<tr>
<td>Gases</td>
<td></td>
</tr>
</tbody>
</table>

Semiconductors

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon</td>
<td></td>
</tr>
<tr>
<td>Germanium</td>
<td></td>
</tr>
<tr>
<td>Gallium arsenide</td>
<td></td>
</tr>
<tr>
<td>Gallium phosphide</td>
<td></td>
</tr>
<tr>
<td>Gallium arsenide phosphate</td>
<td></td>
</tr>
<tr>
<td>Cadmium sulphide</td>
<td></td>
</tr>
<tr>
<td>Zinc sulphide</td>
<td></td>
</tr>
<tr>
<td>Indium antimonide</td>
<td></td>
</tr>
</tbody>
</table>

Low-loss magnetic materials

<table>
<thead>
<tr>
<th>Low-loss magnetic materials</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure iron</td>
<td></td>
</tr>
<tr>
<td>Permalloy</td>
<td></td>
</tr>
<tr>
<td>Mumetal</td>
<td></td>
</tr>
<tr>
<td>Silicon sheet steel 4.5%</td>
<td></td>
</tr>
<tr>
<td>Silicon sheet steel 1%</td>
<td></td>
</tr>
<tr>
<td>Permanendur</td>
<td></td>
</tr>
<tr>
<td>Annealed cast iron</td>
<td></td>
</tr>
<tr>
<td>Ferrite</td>
<td></td>
</tr>
</tbody>
</table>
Good conductors of heat

- Aluminium
- Bronze
- Copper
- Duralumin
- Gold
- Magnesium
- Molybdenum
- Silver
- Tungsten
- Zinc

Sound-absorbing materials

<table>
<thead>
<tr>
<th>Acoustic tiles and boards:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose</td>
</tr>
<tr>
<td>Mineral</td>
</tr>
<tr>
<td>Acoustic plasters</td>
</tr>
<tr>
<td>Blanket materials:</td>
</tr>
<tr>
<td>Rock wool</td>
</tr>
<tr>
<td>Glass wool</td>
</tr>
<tr>
<td>Wood wool</td>
</tr>
</tbody>
</table>

- Perforated panels with absorbent backing
- Suspended absorbers

Good heat insulators

- Asbestos cloth
- Balsa wood
- Calcium silicate
- Compressed straw
- Cork
- Cotton wool
- Diatomaceous earth
- Diatomite
- Expanded polystyrene
- Felt
- Glass fibre and foam
- Glass wool
- Hardboard
- Insulating wallboard
- Magnesia
- Mineral wool
- Plywood
- Polyurethane foam
- Rock wool
- Rubber
- Sawdust
- Slag wool
- Urea formaldehyde foam
- Wood
- Wood wool

Bearing materials

<table>
<thead>
<tr>
<th>Tin based alloy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead based alloy</td>
</tr>
<tr>
<td>Lead–tin–antimony alloy</td>
</tr>
<tr>
<td>Copper–lead alloy</td>
</tr>
<tr>
<td>Leaded bronze</td>
</tr>
<tr>
<td>Tin bronze</td>
</tr>
<tr>
<td>Aluminium bronze</td>
</tr>
<tr>
<td>Cast iron (Meehanite)</td>
</tr>
<tr>
<td>Cadmium–nickel alloy</td>
</tr>
<tr>
<td>Cadmium–silver alloy</td>
</tr>
<tr>
<td>Cadmium–copper–silver alloy</td>
</tr>
<tr>
<td>Silver overlay on</td>
</tr>
<tr>
<td>lead–indium</td>
</tr>
<tr>
<td>Silver overlay on...</td>
</tr>
<tr>
<td>Porous bronze</td>
</tr>
<tr>
<td>Porous ledged bronze</td>
</tr>
<tr>
<td>Porous iron</td>
</tr>
<tr>
<td>Chrome plating</td>
</tr>
<tr>
<td>Carbon</td>
</tr>
<tr>
<td>Carbon (graphite)</td>
</tr>
<tr>
<td>Rubber</td>
</tr>
<tr>
<td>Phenolics</td>
</tr>
<tr>
<td>Nylon</td>
</tr>
<tr>
<td>Teflon (PTFE)</td>
</tr>
<tr>
<td>Cermets</td>
</tr>
<tr>
<td>Lignum vitae</td>
</tr>
<tr>
<td>Jewels</td>
</tr>
</tbody>
</table>

High strength-to-weight ratio materials

- Magnesium alloys
- High strength aluminium alloys
- Titanium
- Titanium alloys
- Nylon
- Glass-reinforced nylon
- Glass-reinforced plastics
- Carbon-fibre-reinforced plastics
- Ceramic-whisker-reinforced metals
- Duralumin
Lubricants

Mineral oils
Vegetable oils
Mineral grease
Tallow
Silicone oil
Silicone grease
Flaked graphite
Colloidal graphite
Graphite grease
Molybdenum disulphide
Water
Gases

6.21 Miscellaneous information

6.21.1 Densities

In the following tables the densities ρ are given for normal pressure and temperature.

<table>
<thead>
<tr>
<th>Metal</th>
<th>ρ (kg m$^{-3}$)</th>
<th>Metal</th>
<th>ρ (kg m$^{-3}$)</th>
<th>Wood (15% moisture)</th>
<th>ρ (kg m$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>2.700</td>
<td>Monel</td>
<td>18.900</td>
<td>Ash</td>
<td>0.660</td>
</tr>
<tr>
<td>Aluminium bronze</td>
<td>7.700</td>
<td>Nickel</td>
<td>8.900</td>
<td>Balsa</td>
<td>1.000–3.900</td>
</tr>
<tr>
<td>(90%Cu, 10%Al)</td>
<td></td>
<td>Nimonic (average)</td>
<td>8.100</td>
<td>Beech</td>
<td>0.740</td>
</tr>
<tr>
<td>Antimony</td>
<td>6.690</td>
<td>Palladium</td>
<td>12.160</td>
<td>Birch</td>
<td>0.720</td>
</tr>
<tr>
<td>Beryllium</td>
<td>1.829</td>
<td>Phosphor bronze</td>
<td>8.900</td>
<td>Elm: English</td>
<td>0.560</td>
</tr>
<tr>
<td>Bismuth</td>
<td>9.750</td>
<td>(typical)</td>
<td></td>
<td>Dutch</td>
<td>0.560</td>
</tr>
<tr>
<td>Brass (60/40)</td>
<td>8.520</td>
<td>Platinum</td>
<td>21.370</td>
<td>Yew</td>
<td>0.690</td>
</tr>
<tr>
<td>Cadmium</td>
<td>8.650</td>
<td>Sodium</td>
<td>9.71</td>
<td>Fir, Douglas</td>
<td>0.480–5.500</td>
</tr>
<tr>
<td>Chromium</td>
<td>7.190</td>
<td>Steel: mild</td>
<td>7.830</td>
<td>Mahogany</td>
<td>0.545</td>
</tr>
<tr>
<td>Cobalt</td>
<td>8.900</td>
<td>stainless</td>
<td>8.000</td>
<td>Pine: Parana</td>
<td>0.550</td>
</tr>
<tr>
<td>Constantan</td>
<td>8.920</td>
<td>Tin: grey</td>
<td>5.750</td>
<td>Pitch</td>
<td>0.640</td>
</tr>
<tr>
<td>Copper</td>
<td>8.930</td>
<td>rhombic</td>
<td>6.550</td>
<td>Scots</td>
<td>0.530</td>
</tr>
<tr>
<td>Gold</td>
<td>19.320</td>
<td>tetragonal</td>
<td>7.310</td>
<td>Spruce, Norway</td>
<td>0.430</td>
</tr>
<tr>
<td>Inconel</td>
<td>8.510</td>
<td>Titanium</td>
<td>4.540</td>
<td>Teak</td>
<td>0.660</td>
</tr>
<tr>
<td>Iron: pure</td>
<td>7.870</td>
<td>Tungsten</td>
<td>19.300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cast</td>
<td>7.270</td>
<td>Uranium</td>
<td>18.680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>11.350</td>
<td>Vanadium</td>
<td>5.960</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.740</td>
<td>Zinc</td>
<td>7.140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>7.430</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>13.546</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>10.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Miscellaneous solids

<table>
<thead>
<tr>
<th>Solid</th>
<th>ρ (kg m$^{-3}$)</th>
<th>Solid</th>
<th>ρ (kg m$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylic</td>
<td>1180</td>
<td>Polyethylene</td>
<td>910–965</td>
</tr>
<tr>
<td>Asbestos</td>
<td>2450 (average)</td>
<td>Polypropylene</td>
<td>900 (approx.)</td>
</tr>
<tr>
<td>Brickwork, common</td>
<td>1600–2000</td>
<td>Polystyrene</td>
<td>1030</td>
</tr>
<tr>
<td>Compressed straw slab</td>
<td>260</td>
<td>Polyurethane foam</td>
<td>30</td>
</tr>
<tr>
<td>Concrete: lightweight</td>
<td>450–1000</td>
<td>PTFE</td>
<td>2170</td>
</tr>
<tr>
<td>medium</td>
<td>1300–1700</td>
<td>PVC</td>
<td>1390</td>
</tr>
<tr>
<td>dense</td>
<td>2000–2400</td>
<td>Rock wool</td>
<td>220–390</td>
</tr>
<tr>
<td>Epoxy resin</td>
<td>1230</td>
<td>Rubber: butadiene</td>
<td>910</td>
</tr>
<tr>
<td>Epoxy/glass fibre</td>
<td>1500</td>
<td>neoprene</td>
<td>1250</td>
</tr>
<tr>
<td>Expanded polystyrene</td>
<td>15–30</td>
<td>natural</td>
<td>920</td>
</tr>
<tr>
<td>Glass: flint</td>
<td>3500</td>
<td>nitrile</td>
<td>1000</td>
</tr>
<tr>
<td>Pyrex</td>
<td>2210</td>
<td>Stone</td>
<td>2300–2800</td>
</tr>
<tr>
<td>window</td>
<td>2650</td>
<td>Urea formaldehyde foam</td>
<td>8</td>
</tr>
<tr>
<td>Glass-wool mat/quilt</td>
<td>25</td>
<td>Wood wool slab</td>
<td>500–800</td>
</tr>
<tr>
<td>Ice</td>
<td>917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineral wool quilt</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nylon</td>
<td>1130</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Liquids and gases

<table>
<thead>
<tr>
<th>Liquid</th>
<th>ρ (kg m$^{-3}$)</th>
<th>Gas</th>
<th>ρ (kg m$^{-3}$)</th>
<th>Gas</th>
<th>ρ (kg m$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amyl alcohol</td>
<td>812</td>
<td>Air</td>
<td>1.293</td>
<td>Oxygen</td>
<td>1.43</td>
</tr>
<tr>
<td>Ethanol</td>
<td>794</td>
<td>Argon</td>
<td>1.78</td>
<td>Propane</td>
<td>2.02</td>
</tr>
<tr>
<td>Methanol</td>
<td>769</td>
<td>Carbon dioxide</td>
<td>1.98</td>
<td>Smoke</td>
<td>0.13</td>
</tr>
<tr>
<td>Lubricating oil</td>
<td>910</td>
<td>Carbon monoxide</td>
<td>1.25 (average)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraffin (kerosene)</td>
<td>800</td>
<td>Ethane</td>
<td>1.36</td>
<td>Steam (100 °C)</td>
<td>0.63</td>
</tr>
<tr>
<td>Petrol</td>
<td>700</td>
<td>Helium</td>
<td>0.177</td>
<td>Sulphur dioxide</td>
<td>2.92</td>
</tr>
<tr>
<td>Pure water</td>
<td>1000</td>
<td>Hydrogen</td>
<td>0.0899</td>
<td>Xenon</td>
<td>5.89</td>
</tr>
<tr>
<td>Sea water</td>
<td>1030</td>
<td>Krypton</td>
<td>3.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy water (11.6 °C)</td>
<td>1105</td>
<td>Methane</td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neon</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitrogen</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.21.2 Thermal expansion

Let:
- $\alpha = \text{coefficient of linear expansion (°C}^{-1})$
- $\beta = \text{coefficient of superficial expansion (°C}^{-1})$
- $\gamma = \text{coefficient of cubical expansion (°C}^{-1})$
- $\theta = \text{temperature change (°C)}$
- $L = \text{initial length}$
- $A = \text{initial area}$
- $V = \text{initial volume}$

$L' = \text{final length}$
$A' = \text{final area}$
$V' = \text{final volume}$

Then:

Approximately:

- $\beta = 2\alpha$
- $\gamma = 3\alpha$

$L' = L(1 + \alpha \theta)$
$A' = A(1 + \beta \theta)$
$V' = V(1 + \gamma \theta)$
6.21.3 Freezing mixtures

<table>
<thead>
<tr>
<th>Ammonium nitrate (parts)</th>
<th>Crushed ice or snow in water (parts)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.94</td>
<td>-4</td>
</tr>
<tr>
<td>1</td>
<td>1.20</td>
<td>-14</td>
</tr>
<tr>
<td>1</td>
<td>1.31</td>
<td>-17.5</td>
</tr>
<tr>
<td>1</td>
<td>3.61</td>
<td>-8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calcium chloride (parts)</th>
<th>Crushed ice or snow in water (parts)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.49</td>
<td>-20</td>
</tr>
<tr>
<td>1</td>
<td>0.61</td>
<td>-39</td>
</tr>
<tr>
<td>1</td>
<td>0.70</td>
<td>-55</td>
</tr>
<tr>
<td>1</td>
<td>1.23</td>
<td>-22</td>
</tr>
<tr>
<td>1</td>
<td>4.92</td>
<td>-4</td>
</tr>
</tbody>
</table>

Solid carbon dioxide with alcohol – 72
Solid carbon dioxide with chloroform or ether – 77

6.21.4 Coefficients of cubical expansion of liquids at normal temperature (unless otherwise stated)

<table>
<thead>
<tr>
<th>Liquid</th>
<th>γ (× 10⁻⁶ °C⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic acid</td>
<td>107</td>
</tr>
<tr>
<td>Aniline</td>
<td>85</td>
</tr>
<tr>
<td>Benzene</td>
<td>124</td>
</tr>
<tr>
<td>Chloroform (20%)</td>
<td>126</td>
</tr>
<tr>
<td>Ethanol</td>
<td>110</td>
</tr>
<tr>
<td>Ether</td>
<td>163</td>
</tr>
<tr>
<td>Glycerine</td>
<td>53</td>
</tr>
<tr>
<td>Mercury</td>
<td>18</td>
</tr>
<tr>
<td>Olive oil</td>
<td>70</td>
</tr>
<tr>
<td>Paraffin</td>
<td>90</td>
</tr>
<tr>
<td>Sulphuric acid</td>
<td>51</td>
</tr>
<tr>
<td>Turpentine</td>
<td>94</td>
</tr>
<tr>
<td>Water</td>
<td>41.5</td>
</tr>
<tr>
<td>(0–100°C)</td>
<td></td>
</tr>
<tr>
<td>(100–200°C)</td>
<td></td>
</tr>
<tr>
<td>(200–300°C)</td>
<td></td>
</tr>
</tbody>
</table>

Coefficient of cubical expansion of liquids at normal temperature (unless otherwise stated)
6.21.6 Anti-freeze mixtures

<table>
<thead>
<tr>
<th>Concentration (% vol.)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol (ethyl alcohol)</td>
<td>−3.3</td>
<td>−7.8</td>
<td>−14.4</td>
<td>−22.2</td>
<td>−30.6</td>
</tr>
<tr>
<td>Methanol (methyl alcohol)</td>
<td>−5.0</td>
<td>−12.1</td>
<td>−21.1</td>
<td>−32.2</td>
<td>−45.0</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>−3.9</td>
<td>−8.9</td>
<td>−15.6</td>
<td>−24.4</td>
<td>−36.7</td>
</tr>
<tr>
<td>Glycerine</td>
<td>−1.7</td>
<td>−5.0</td>
<td>−9.4</td>
<td>−15.6</td>
<td>−22.8</td>
</tr>
</tbody>
</table>
7.1 Length measurement

7.1.1 Engineer’s rule

These are made from hardened and tempered steel marked off with high accuracy in lengths from about 10-30 cm with folding rules up to 60 cm. They are used for marking off, setting callipers and dividers, etc. When used directly, the accuracy is \(\pm 0.25 \) mm, and when used to set a scribing block the accuracy is \(\pm 0.125 \) mm.

7.1.2 Feeler gauge (thickness gauge)

These consist of a number of thin blades of spring steel of exact, various thicknesses. They are used for measuring small gaps between parts.

7.1.3 Micrometers

Micrometers are used for the measurement of internal and external dimensions, particularly of cylindrical shape. Measurement is based on the advance of a precision screw. The ‘outside micrometer’ is made in a variety of sizes, the most popular being 25 mm in 0.01-mm steps. It has a fixed ‘barrel’ graduated in
Micrometer head

Large outside micrometer with extension rod

Inside micrometer

1-mm and 0.5-mm divisions screwed with a 0.5 mm pitch thread and a 'thimble' graduated around its circumference with 50-0.01 mm divisions.

An 'inside micrometer' has the fixed anvil projecting from the thimble; extensions may be attached. A 'micrometer head' is available consisting of the barrel and thimble assembly for use in any precision measuring device.

Reading a micrometer

Reading shown:
Reading on barrel = 5.5 mm
Reading on thimble = 0.28 mm
Total reading = 5.78 mm

Vernier calliper gauge

This is used for internal and external measurement. It has a long flat scale with a fixed jaw and a sliding jaw, with a scale, or cursor, sliding along the fixed scale and read in conjunction with it. Two scales are provided to allow measurement inside or outside of the jaws.

Reading shown:
Reading on main scale = 43.5 mm
Reading on cursor = 0.18 mm
Total reading = 43.68 mm

Dial test indicator (dial gauge)

The linear movement of a spring-loaded plunger is magnified by gears and displayed on a dial. Various sensitivities are available and a smaller scale shows complete revolutions of the main pointer. A typical indicator has a scale with 100-0.01 mm divisions and a small dial reading up to 25 revolutions of the pointer, i.e. a total range of 2.5 mm.
7.1.6 **Gauge blocks (slip gauges)**

These are hardened, ground and lapped rectangular blocks of steel made in various thicknesses of extreme accuracy and with a high degree of surface finish so that they will 'wring' together with a slight twist and pressure and remain firmly attached to one another. They are made in a number of sets; BS 888 recommends metric sets, two of which are given in the table below.

Gauge block sets (BS 888)

<table>
<thead>
<tr>
<th>Gauge set</th>
<th>No. of blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set M78</td>
<td></td>
</tr>
<tr>
<td>1.01–1.49 mm in 0.01-mm steps</td>
<td>49</td>
</tr>
<tr>
<td>0.05–9.50 mm in 0.50-mm steps</td>
<td>19</td>
</tr>
<tr>
<td>10, 20, 30, 40, 50, 75, 100 mm</td>
<td>7</td>
</tr>
<tr>
<td>1.0025 mm</td>
<td>1</td>
</tr>
<tr>
<td>1.005 mm</td>
<td>1</td>
</tr>
<tr>
<td>1.0075 mm</td>
<td>1</td>
</tr>
<tr>
<td>Set M50</td>
<td></td>
</tr>
<tr>
<td>1.01–1.09 mm in 0.01-mm steps</td>
<td>9</td>
</tr>
<tr>
<td>1.10–1.90 mm in 0.01-mm steps</td>
<td>9</td>
</tr>
<tr>
<td>1–25 mm in 1-mm steps</td>
<td>25</td>
</tr>
<tr>
<td>50, 75, 100 mm</td>
<td>3</td>
</tr>
<tr>
<td>1.0025, 1.0050, 1.0075 mm</td>
<td>3</td>
</tr>
<tr>
<td>0.05 mm</td>
<td>1</td>
</tr>
</tbody>
</table>

Protective slips are provided for use at the ends of the combinations.

7.1.8 **Accuracy of linear measurement**

The following table gives the accuracy of different methods of linear measurement.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Use</th>
<th>Accuracy (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel rule</td>
<td>Directly</td>
<td>±0.25</td>
</tr>
<tr>
<td></td>
<td>To set a scribing block</td>
<td>±0.125</td>
</tr>
<tr>
<td>Vernier calipers</td>
<td>External</td>
<td>±0.03</td>
</tr>
<tr>
<td></td>
<td>Internal</td>
<td>±0.05</td>
</tr>
<tr>
<td>25-mm micrometer</td>
<td>Directly</td>
<td>±0.007</td>
</tr>
<tr>
<td></td>
<td>Preset to gauge blocks</td>
<td>±0.005</td>
</tr>
<tr>
<td>Dial gauge</td>
<td>Over complete range</td>
<td>±0.003–0.03</td>
</tr>
<tr>
<td>Dial gauge</td>
<td>As comparator over small range</td>
<td>±0.0001–0.0025</td>
</tr>
</tbody>
</table>
7.2 Angle measurement

7.2.1 Combination angle slip gauges

Precision angle blocks are available with faces inclined to one another at a particular angle accurate to one second of arc. The gauges may be wrung together as with slip gauges, and angles may be added or subtracted to give the required angle. Details of a 13-block set are given.

13-Block set:
Degrees: 1, 3, 9, 9, 27, 41.
Minutes: 1, 3, 9, 27.
Seconds: 3, 9, 27.
Plus 1 square block.

7.2.3 Sine bar

This is used to measure the angle of one surface relative to another. It consists of a precision bar with rollers, a precise distance apart. The angle of tilt is determined from the size of slip gauge used.

Angle of surface \(\theta = \sin^{-1} \left(\frac{h}{L} \right) \)

where: \(L \) = distance between rollers, \(h \) = height of slip gauges.
7.3 Strain measurement

In carrying out strength tests on materials it is necessary to measure the strain. This is defined as the extension divided by the original length. In the case of mechanical extensometers, the original length is a 'gauge length' marked on the specimen. A typical gauge length is 2 cm and the magnification is up to 2000.

7.3.1 Extensometer

A typical extensometer (the Huggenberger) is shown. The knife edges A and B are held on to the specimen by a clamp with gauge length L. There are pivots at C and D and knife edges E and F are held in contact by a tension spring. The magnified increase in L is indicated by a pointer H on a scale J.

7.3.2 Strain gauges

The commonest type of strain gauge is the electrical resistance strain gauge ('strain gauge' for short). These are devices which produce an electrical signal proportional to the mechanical strain of the surface to which they are bonded. They can be made extremely small and can be attached to components of any shape which may be moving, e.g. an engine con-rod.

The gauge consists of a grid of resistance wire or, more usually, foil mounted on an insulating backing cemented to the component. Leads are connected to a bridge circuit and the strain is measured by a galvanometer or calibrated resistor. Dynamic strains may be indicated on an oscilloscope or suitable recorder. It is usually necessary to use 'dummy' gauges mounted on an unstressed surface at the same temperature to compensate for temperature effects.

![Electrical resistance strain gauge](image)

The sensitivity of a strain gauge is given by the 'gauge factor', i.e. the ratio of change in resistance to gauge resistance divided by the strain. Various arrangements are used, depending on the type of stress being measured, e.g. tension, compression, bending and torsion. For two-dimensional stress situations a 'strain gauge rosette' consisting of three gauges at different angles is used. The principal stresses and their direction can be calculated from the three strains.

7.3.3 Strain-gauge applications

Symbols used:

- R = resistance
- $R_g =$ gauge resistance
- $R_d =$ dummy gauge resistance
- $dR =$ change in resistance
- $e =$ strain
- $E =$ Young's modulus
- $\sigma =$ direct stress
- $V =$ voltage applied to bridge
- $V_g =$ galvanometer voltage
- $I_g =$ gauge current
- $F_g =$ gauge factor

Gauge factor $F_g = \frac{dR/R}{e}$

Direct stress $\sigma = eE$
Tension or compression (one active gauge, one dummy gauge)

Galvanometer voltage \(V = F e \frac{V}{2} \)

Gauge current \(I_s = \frac{V}{2R_g} \)

Bending (two active gauges: one in tension, one in compression)

\[V = 2F e V; \quad I_s = \frac{V}{2R_g} \]

Bending (four active gauges: two in tension, two in compression)

\[V = 2F e V; \quad I_s = \frac{V}{4R_g} \]

This arrangement eliminates the effect of bending.

Tension or compression (two active gauges and two dummy gauges in series)

\[V = F e \frac{V}{2}; \quad I_s = \frac{V}{4R_g} \]
Torque measurement

Two gauges are mounted on a shaft at 45° to its axis and perpendicular to one another. Under torsion one gauge is under tension and the other under compression, the stresses being numerically equal to the shear stress. The gauges are connected in a bridge circuit, as for bending. To eliminate bending effects four gauges may be used, two being on the opposite side of the shaft. In this case:

\[P = 2F \varepsilon eV \]

7.3.4 Strain gauge rosette

In the case of two-dimensional stress, it is necessary to use three gauges. If the gauges are at 45° to one another, then the principal stresses may be found as follows.

Let:
\[e_a, e_b, e_c = \text{measured strains} \]
\[E = \text{Young's modulus} \]
\[v = \text{Poisson's ratio} \]

Principal stresses

\[\sigma_1 = E \left[\frac{K_1}{1-v} + \frac{K_2}{1+v} \right] \]
\[\sigma_2 = E \left[\frac{K_1}{1-v} - \frac{K_2}{1+v} \right] \]

Angle between \(\sigma_1 \) and \(e_a \)

\[\theta = \frac{1}{2} \tan^{-1} \left(\frac{2e_b - e_a - e_c}{e_a - e_c} \right) \]

where:
\[K_1 = \frac{(e_a + e_c)}{2} \]
\[K_2 = \frac{(e_a - e_b)^2 + (e_b + e_c)^2}{2} \]

7.3.5 Characteristics of some strain gauges

<table>
<thead>
<tr>
<th>Material</th>
<th>Gauge factor, (F_s)</th>
<th>Resistance, (R_s (\Omega))</th>
<th>Temperature coefficient of resistance, ((\degree C)^{-1})</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance (57%Cu, 43%Ni)</td>
<td>2.0</td>
<td>100</td>
<td>0.11 \times 10^{-4}</td>
<td>(F_s) constant over wide range of strain; low-temperature (< 250°C) use</td>
</tr>
<tr>
<td>Platinum alloys</td>
<td>4.0</td>
<td>50</td>
<td>0.22 \times 10^{-2}</td>
<td>For high-temperature (> 500°C) use</td>
</tr>
<tr>
<td>Silicon semiconductor</td>
<td>-100 to +100</td>
<td>200</td>
<td>0.09</td>
<td>Brittle, but high (F_s). Not suitable for large strains</td>
</tr>
</tbody>
</table>
7.4 Temperature measurement

7.4.1 Liquid-in-glass thermometers

Mercury

The commonest type of thermometer uses mercury which has a freezing point of \(-39^\circ C\) and a boiling point of \(357^\circ C\), although it can be used up to \(500^\circ C\) since the thermometer may contain an inert gas under pressure.

The advantages of this thermometer are: good visibility; linear scale; non-wetting; good conductor of heat; and pure mercury is easily available.

The disadvantages are: it is fragile; slow cooling of glass; long response time; and errors arise due to non-uniform bore and incorrect positioning.

Alcohol

Alcohol can be used down to \(-113^\circ C\), but its boiling point is only \(78^\circ C\). The alcohol needs colouring. It is cheaper than mercury, and its low-temperature operation is an advantage in a number of applications.

Mercury in steel

This thermometer employs a mercury filled capillary tube connected to a Bourdon-type pressure gauge which deflects as the mercury expands with temperature. It is extremely robust and can give a remote indication.

7.4.2 Thermocouples

When a junction is made of two dissimilar metals (or semi-conductors) a small voltage, known as a ‘thermal electromotive force (e.m.f.)’ exists across it, which increases, usually linearly, with temperature. The basic circuit includes a ‘cold junction’ and a sensitive measuring device, e.g. a galvanometer, which indicates the e.m.f. The cold junction must be maintained at a known temperature as a reference, e.g. by an ice bath or a thermostatically controlled oven. If two cold junctions are used then the galvanometer may be connected by ordinary copper leads. A number of thermocouples connected in series, known as a ‘thermopile’, gives an e.m.f. proportional to the number of thermocouples. Practical thermocouples are protected by a metal sheath with ceramic beads as insulation.

The advantages of thermocouples are: they are simple in construction, compact, robust and relatively cheap; they are suitable for remote control, automatic systems and recorders since they have a short response time.

The disadvantages are that they suffer from errors due to voltage drop in the leads, variation in cold-junction e.m.f. and stray thermoelectric effects in leads.

7.4.3 Thermocouple circuits

Basic thermocouple circuit

\[V = \text{Constant} \times \text{Temperature (usually)} \]

Galvanometer e.m.f. \[V = V_h - V_c \]

where: \(V_h = \text{e.m.f. for ‘hot’ junction} \), \(V_c = \text{e.m.f. for ‘cold’ junction} \)

Thermocouple circuit with ice bath

A bath of melting ice is used for the cold junction. Temperature is given relative to \(0^\circ C\).

G = galvanometer, C = cold junction, H = hot junction
Thermocouple circuit with extension leads

Two cold junctions at the same temperature are used and copper extension leads to the measuring instrument.

Practical thermocouple

The wires pass through ceramic beads inside a protective metal sheath.

Thermopile

This consists of a number of thermocouples connected in series to give a higher e.m.f.

7.4.4 Thermocouple pairs and temperature limit

<table>
<thead>
<tr>
<th>Materials</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper/constantan (57%Cu, 43%Ni)</td>
<td>-250</td>
<td>400</td>
<td>Flue gases, food processes, sub-zero temperatures</td>
</tr>
<tr>
<td>Iron/constantan</td>
<td>-200</td>
<td>850</td>
<td>Paper pulp mills, chemical reactors, low-temperature furnaces</td>
</tr>
<tr>
<td>Chromel (90%Ni, 10%Cr)/Alumel (94%Ni, 3%Mn, 2%Al, 1%Si)</td>
<td>0</td>
<td>1100</td>
<td>Blast-furnace gas, brick kilns, glass manufacture</td>
</tr>
<tr>
<td>Platinum/platinum rhodium</td>
<td>0</td>
<td>1400</td>
<td>Special applications</td>
</tr>
<tr>
<td>Tungsten/molybdenum</td>
<td>1250</td>
<td>2600</td>
<td>Special applications</td>
</tr>
</tbody>
</table>

7.4.5 Thermoelectric sensitivity of materials

Thermoelectric sensitivity of thermocouple materials relative to platinum (reference junction at 0°C)

<table>
<thead>
<tr>
<th>Metal</th>
<th>Sensitivity ($\mu V °C^{-1}$)</th>
<th>Metal</th>
<th>Sensitivity ($\mu V °C^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bismuth</td>
<td>-72</td>
<td>Silver</td>
<td>6.5</td>
</tr>
<tr>
<td>Constantan</td>
<td>-35</td>
<td>Copper</td>
<td>6.5</td>
</tr>
<tr>
<td>Nickel</td>
<td>-15</td>
<td>Gold</td>
<td>6.5</td>
</tr>
<tr>
<td>Potassium</td>
<td>-9</td>
<td>Tungsten</td>
<td>7.5</td>
</tr>
<tr>
<td>Sodium</td>
<td>-2</td>
<td>Cadmium</td>
<td>7.5</td>
</tr>
<tr>
<td>Platinum</td>
<td>0</td>
<td>Iron</td>
<td>18.5</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.6</td>
<td>Nichrome</td>
<td>25</td>
</tr>
<tr>
<td>Carbon</td>
<td>3</td>
<td>Antimony</td>
<td>47</td>
</tr>
<tr>
<td>Aluminium</td>
<td>3.5</td>
<td>Germanium</td>
<td>300</td>
</tr>
<tr>
<td>Lead</td>
<td>4</td>
<td>Silicon</td>
<td>440</td>
</tr>
<tr>
<td>Tantalum</td>
<td>4.5</td>
<td>Tellurium</td>
<td>500</td>
</tr>
<tr>
<td>Rhodium</td>
<td>6</td>
<td>Selenium</td>
<td>900</td>
</tr>
</tbody>
</table>
7.4.6 Thermal e.m.f. for thermocouple combinations

Thermal e.m.f. for common thermocouple combinations (reference junction at 0 °C)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>E.m.f. (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>°C</td>
</tr>
<tr>
<td>-300</td>
<td>-184</td>
</tr>
<tr>
<td>-250</td>
<td>-157</td>
</tr>
<tr>
<td>-200</td>
<td>-129</td>
</tr>
<tr>
<td>-150</td>
<td>-101</td>
</tr>
<tr>
<td>-100</td>
<td>-73</td>
</tr>
<tr>
<td>-50</td>
<td>-46</td>
</tr>
<tr>
<td>0</td>
<td>-18</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>38</td>
</tr>
<tr>
<td>150</td>
<td>66</td>
</tr>
<tr>
<td>200</td>
<td>93</td>
</tr>
<tr>
<td>250</td>
<td>121</td>
</tr>
<tr>
<td>300</td>
<td>149</td>
</tr>
<tr>
<td>350</td>
<td>177</td>
</tr>
<tr>
<td>400</td>
<td>204</td>
</tr>
<tr>
<td>450</td>
<td>232</td>
</tr>
<tr>
<td>500</td>
<td>260</td>
</tr>
<tr>
<td>600</td>
<td>316</td>
</tr>
<tr>
<td>700</td>
<td>371</td>
</tr>
<tr>
<td>800</td>
<td>427</td>
</tr>
<tr>
<td>1000</td>
<td>538</td>
</tr>
<tr>
<td>1200</td>
<td>649</td>
</tr>
<tr>
<td>1500</td>
<td>816</td>
</tr>
<tr>
<td>1700</td>
<td>927</td>
</tr>
<tr>
<td>2000</td>
<td>1093</td>
</tr>
<tr>
<td>2500</td>
<td>1371</td>
</tr>
<tr>
<td>3000</td>
<td>1649</td>
</tr>
</tbody>
</table>

7.4.7 Electronic thermocouple thermometer

This has a robust sheathed thermocouple connected to a voltmeter which gives a digital or analogue readout of temperature. It avoids many of the usual disadvantages of thermocouples.

7.4.8 Resistance thermometers

Resistance thermometers are based on the fact that the electrical resistance of a metal wire varies with temperature. The metals most used are platinum and nickel, for which the resistance increases with temperature in a linear manner.
If R_0 is the resistance at 0°C, then the resistance R, at T°C is:

$$R = R_0(1 + \alpha T)$$

or

$$T = \frac{(R_1 - R_0)}{\alpha R_0}$$

where: $\alpha =$ temperature coefficient of resistance.

The value of α is given for a number of metals as well as electrolytes and semi-conductors in the table below.

Resistance temperature coefficients (at room temperature) °C⁻¹

<table>
<thead>
<tr>
<th>Material</th>
<th>α (°C⁻¹)</th>
<th>Material</th>
<th>α (°C⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel</td>
<td>0.0067</td>
<td>Gold</td>
<td>0.004</td>
</tr>
<tr>
<td>Iron</td>
<td>0.002–0.006</td>
<td>Platinum</td>
<td>0.00392</td>
</tr>
<tr>
<td>Tungsten</td>
<td>0.0048</td>
<td>Mercury</td>
<td>0.00099</td>
</tr>
<tr>
<td>Aluminium</td>
<td>0.0045</td>
<td>Manganin</td>
<td>±0.00002</td>
</tr>
<tr>
<td>Copper</td>
<td>0.0043</td>
<td>Carbon</td>
<td>−0.0007</td>
</tr>
<tr>
<td>Lead</td>
<td>0.0042</td>
<td>Electrolytes</td>
<td>−0.02 to −0.09</td>
</tr>
<tr>
<td>Silver</td>
<td>0.0041</td>
<td>Semi-conductor (thermistor)</td>
<td>−0.068 to +0.14</td>
</tr>
</tbody>
</table>

The construction of a typical resistance thermometer is shown in the figure. It consists of a small resistance coil enclosed in a metal sheath with ceramic insulation beads. The temperature range is 100°C to 300°C for nickel and 200°C to 800°C for platinum. With other metals it is possible to reach 1500°C. The small resistance change is measured by means of a Wheatstone bridge and dummy leads eliminate temperature effects on the element leads.

The resistance thermometer is used for heat treatment and annealing furnaces and for calibration of other thermometers.

The main disadvantages are fragility and slow response.

7.4.9 Thermistors

[Graph showing resistance vs temperature for different materials]
Most metals have a positive temperature coefficient of resistance, i.e. resistance increases with temperature. Semi-conductors may have a very large negative coefficient which is non-linear. A ‘thermistor’ is a bead of such material, e.g. oxides of copper, manganese and cobalt, with leads connected to a measuring circuit. They are extremely sensitive; for example, a change from 400Ω at 0°C to 100Ω at 140°C. They are inexpensive and suitable for very small changes in temperature. The graph shows curves of resistivity for three thermistor materials compared with platinum.

7.4.10 Pyrometers

Total radiation pyrometer

At very high temperatures where thermometers and thermocouples are unsuitable, temperature can be deduced from the measurement of radiant energy from a hot source. The radiation is passed down a tube and focused, using a mirror, onto a thermocouple or thermopile which is shielded from direct radiation.

Disappearing-filament pyrometer

The brightness and colour of a hot body varies with temperature and in the case of the disappearing filament pyrometer it is compared with the appearance of a heated lamp filament. The radiation is focused onto the filament the brightness of which is varied by means of a calibrated variable resistor until the filament appears to vanish. A red filter protects the eye.

7.4.11 Bimetallic thermometer

The deflection of a bimetallic strip or coil may be used to indicate temperature. This type is not very accurate but is simple and cheap. These thermometers are used for alarms and temperature controllers when connected to a mechanical system.

7.4.12 Temperature-sensitive paints

Kits are available of paints and crayons made of chemicals which change colour at definite temperatures. The range is from about 30°C to 700°C, with an accuracy of about 5%. Several paints are required to cover the range. Crayons are the easiest to use. The method is suitable for inaccessible places.

7.4.13 Fixed-point temperatures

The table below gives fixed-point temperatures known to a high degree of accuracy from which instruments can be calibrated.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling point of liquid oxygen</td>
</tr>
<tr>
<td>Melting point of ice</td>
</tr>
<tr>
<td>Triple point of water</td>
</tr>
<tr>
<td>Boiling point of water</td>
</tr>
<tr>
<td>Freezing point of zinc</td>
</tr>
<tr>
<td>Boiling point of liquid sulphur</td>
</tr>
<tr>
<td>Freezing point of liquid antimony</td>
</tr>
<tr>
<td>Melting point of silver</td>
</tr>
<tr>
<td>Melting point of gold</td>
</tr>
</tbody>
</table>
7.5 Pressure measurement

7.5.1 Pressure units

1 newton per square metre (1 N m⁻²) = 1 pascal (1 Pa)
1 bar = 100 000 (10⁵) Pa = 1000 millibar (mbar)
1 mbar = 100 Pa
1 bar = 760 mm Hg (approximately)

7.5.2 Barometers

Mercury barometers

The basic barometer consists of a vertical glass tube closed at the top, filled with mercury and standing in a mercury bath. There is a space at the top of the tube in which a vacuum exists and the height of the column is a measure of atmospheric pressure. The so-called 'Fortin barometer' is a mercury barometer with a Vernier scale.

Aneroid barometer

A sealed flexible metal bellows or capsule with a very low internal pressure is connected to a lever with pointer and scale. Atmospheric-pressure variations cause a corresponding deflection of the capsule and movement of the pointer. The pointer usually carries a pen which records the temperature on a rotating chart.

Mercury barometer

Atmospheric pressure supports a column of mercury of approximately 760 mm Hg.

Standard atmospheric pressure = 1.0135 bar ≡ 1013.25 mbar ≡ 101325 Pa.
Gauge pressure \(p_a = p - p_a \)
where: \(p \) = absolute pressure, \(p_a \) = atmospheric pressure.

7.5.3 Manometers

The U-tube manometer may be used to measure a pressure relative to atmospheric pressure, or the difference between two pressures. If one 'leg' is much larger in diameter than the other, a 'single-leg manometer' is obtained and only a single reading is required (as for the barometer). The inclined single-leg manometer gives greater accuracy. When the manometer fluid is less dense than the fluid, the pressure of which is to be measured, an inverted manometer is used. When pressure is measured relative to atmospheric pressure the air density is assumed to be negligible compared with that of the manometer fluid.
U-tube manometer — pressure relative to atmosphere (gauge pressure)

Let:

- $\rho_m = \text{density of manometer fluid}$
- $h = \text{manometer reading}$
- $g = \text{acceleration due to gravity}$

Measured pressure

$$p = \rho_m gh$$

Single-leg manometer — gauge pressure

Inclined single-leg manometer

Inverted U-tube manometer

Pressure difference

$$p_1 - p_2 = (\rho_m - \rho_t)gh$$

Where:

- $\rho_t = \text{density of measured fluid.}$

Measured pressure

$$p = \rho_m gh$$
7.5.4 Bourdon pressure gauge

In the Bourdon gauge a curved flattened metal tube is closed at one end and connected to the pressure source at the other end. Under pressure the tube tends to straighten and causes a deflection of a pointer through a lever and rack and pinion amplifying system. This gauge can be used for liquids or gases from a fraction of a bar pressure up to 10000 bar. Calibration is by means of a ‘dead-weight tester’.

7.5.5 Pressure transducers

A wide range of transducers is available which convert the deflection of a diaphragm or Bourdon tube into an electrical signal which gives a reading on an indicator or is used to control a process, etc. Transducers cover a wide range of pressure and have a fast response. Types include, piezo-crystal, strain gauge, variable capacity, and variable inductance.

7.6 Flow measurement

The simplest method of measuring the mass flow of a liquid is to collect the liquid in a bucket or weigh tank over a given time and divide the mass by the collection time. For gases, a volume can be collected in a gasometer over a known time to give the volume flow rate.

\[\dot{m} = \text{mass per second} = \frac{\text{Mass collected}}{\text{Collection time}} \]

Volume per second = \(\frac{\text{Mass per second}}{\text{Density}} \)

Weigh tank

\[\dot{m} = \frac{\text{Mass collected}}{\text{Collection time}} \]

7.6.2 Measurement by gas tank (gasometer)

Volume per second = \(\frac{\text{Volume collected}}{\text{Collection time}} \)
7.6.3 Rotameter

This is a type of variable-orifice meter consisting of a vertical glass tapered tube containing a metal 'float'. The fluid, which may be a liquid or gas, flows through the annular space between the float and the tube. As the flow is increased the float moves to a greater height. The movement is roughly proportional to flow, and calibration is usually carried out by the supplier. Angled grooves in the rim of the float cause rotation and give the float stability.

7.6.4 Turbine flow meters

An axial or tangential impeller mounted in a pipe rotates at a speed roughly proportional to the velocity, and hence the flow, of the fluid in the pipe. The rotational speed is measured either mechanically or electronically to give flow or flow rate.

7.6.5 Differential pressure flowmeters

These depend on the pressure difference caused by a change in section or obstruction in a pipe or duct. British Standard BS 1042 deals with the design of the 'venturi-meter' the 'orifice plate' and the 'nozzle'. Pressure difference is measured by a manometer or transducer; the position of the pressure tappings is important. Flow is proportional to the square root of the pressure difference and calibration is therefore necessary. Of the three types the venturi-meter is the most expensive but gives the least overall pressure loss. The orifice plate is the simplest and cheapest type and occupies the least space, but has an appreciable overall pressure loss. The nozzle type is a compromise between the other two.

Venturi meter

(See Section 4.3.3)

Flow \(Q = \text{Constant} \sqrt{(p_1 - p_2)} \)
Pressure difference \((p_1 - p_2) = (\rho_m - \rho_t)gh \)

Symbols are as for manometers (see above).

Orifice meter

The flow formula is as for the Venturi meter.
7.7 Velocity measurement

7.7.1 Pitot-static tube

The pitot-static tube consists of two concentric tubes, the central one with an open end pointing upstream of the fluid flow and the other closed at the end but with small holes drilled at right angles to the direction of flow. The central tube pressure is equal to the static pressure plus the 'velocity pressure', whereas the outer tube pressure is the static pressure only.

A manometer or other differential pressure measuring device measures the pressure difference between the tubes which is equal to the 'velocity pressure'. For large pipes or ducts, traversing gear is used and an average value of velocity calculated.

Fluid velocity \(V = \sqrt{\frac{2(p_2 - p_1)}{\rho_f}} \)

\(= \sqrt{\frac{2\rho_mgh}{\rho_f}} \)

\[V \]

\[(p_1 - p_2) \]
7.7.2 Anemometers

Various types of anemometer are used to measure the velocity, usually of air. The 'cup type' is used for free air and has hemispherical cups on arms attached to a rotating shaft. The shape of the cups gives a greater drag on one side than the other and results in a speed of rotation approximately proportional to the air speed. Velocity is found by measuring revolutions over a fixed time. The 'vane anemometer' has an axial impeller attached to a handle with extensions and an electrical pick-up which measures the revolutions. A meter with several ranges indicates the velocity.

The 'hot-wire anemometer' is used where it is necessary to investigate the change in velocity over a small distance, e.g. in a boundary layer. A probe terminating in an extremely small heated wire element is situated in the fluid stream and cools to an extent which depends on the velocity. The resulting change in resistance of the element is measured by a bridge circuit and is related to velocity by calibration. The response is rapid.

7.8 Rotational-speed measurement

7.8.1 Mechanical tachometers

These may be permanently mounted on a machine or hand-held. The hand-held type has several shaft attachments with rubber ends (see figure), including a conical end for use with a shaft centre hole, a wheel to run on a cylindrical surface, and a cup end for use where there is no centre hole.

7.8.2 Electrical tachometers

The tachogenerator is driven by the shaft and gives an output voltage proportional to speed which is indicated as rotational speed on a meter. Alternatively, a toothed wheel passing an inductive pick-up generates pulses which are counted over a fixed time and displayed on a meter as the speed of rotation.

7.8.3 Stroboscope

This has an electronic flash tube which flashes at a variable rate and which is adjusted to coincide with the rotational speed so that the rotating object, or a suitable mark on it, appears to stand still. The flash-rate control is calibrated in rotational speed.
7.9 Materials-testing measurements

7.9.1 Hardness testing

Hardness tests on materials consist of pressing a hardened ball or point into a specimen and measuring the size of the resulting indentation. The two methods shown are the Brinell method, which utilizes a ball, and the Vicker's pyramid method which utilizes a pyramidal point.

Other methods in use are the Rockwell method which uses a ball or diamond cone, and the Shore scleroscope, a portable instrument which measures the height of rebound of a hammer falling on the surface.

Measurement of Brinell hardness number (BHN)

The ball size is 10 mm for most cases or 1 mm for light work.

Let:
- $D =$ diameter of indentation (mm)
- $D_b =$ diameter of ball (mm)
- $F =$ force on ball (kg)

Values of F: steel, $F = 30D_b^2$; copper, $F = 10D_b^2$; aluminium, $F = 5D_b^2$

Hardness $BHN = \frac{F}{1.57D_b(D_b - \sqrt{D_b^2 - D^2})}$

Vicker's pyramid number (VPN)

Let:
- $F =$ load (kg)
- $b =$ diagonal of indentation (mm)

$VPN = 1.854 \frac{F}{b^2}$
7.9.2 Toughness tests

Toughness testing consists of striking a notched test piece with a hammer and measuring the energy required to cause fracture. The energy is indicated on the dial of the test machine and the force is produced by a swinging mass.

\[
\text{Toughness} = \text{Constant} \times \frac{\text{Energy to fracture specimen}}{\text{Energy of the swinging mass}}
\]

The energy of the swinging mass is 163 J for the Izod impact test and 294 J for the Charpy test.

Izod impact test machine and test piece

7.9.3 Tensile test on steel

Testing machines are used to determine the mechanical properties of materials under tension, compression, bending, shear and torsion.

One of the most important tests is the tensile test, especially that for steel. Typical curves are shown for ductile steel and hard steel. In the case of a ductile steel such as 'mild steel', there is a definite yield point above which the steel is no longer elastic. In the case of hard steel the load–extension curve becomes non-linear and it is necessary to specify a 'proof stress' for a specified strain, e.g. 0.1%.
Load-extension curves for steel

Symbols used:

\[W = \text{load} \]
\[W_e = \text{elastic limit} \]
\[W_y = \text{yield load} \]
\[W_f = \text{fracture load} \]
\[W_m = \text{maximum load} \]
\[W_p = \text{proof load} \]
\[e = \text{strain} \]
\[x = \text{extension} \]
\[\sigma = \text{stress} \]
\[E = \text{Young's modulus} \]

Tensile strength \(TS = \frac{W_m}{\text{Original area of cross-section}} \) (N mm\(^{-2}\))

Yield stress \(YS = \frac{W_y}{\text{Area of cross-section}} \) (N mm\(^{-2}\))

Proof stress \(PS = \text{Stress for a specified strain (e.g. 0.1%), (N mm}^{-2}) \)

Strain \(e = \frac{\text{Extension at load } W}{\text{Original gauge length (mm)}} \)

Young's modulus \(E = \frac{\text{Stress in elastic region}}{\text{Corresponding strain}} \) (N mm\(^{-2}\))

Percentage elongation (Elong. %) = \(\frac{\text{Extension at failure}}{\text{Original gauge length}} \times 100\% \)

Percentage reduction in area = \(\frac{\text{Original area of cross-section} - \text{Area at fracture}}{\text{Original area}} \times 100\% \)
8.1 Units and symbols

8.1.1 Symbols and units for physical quantities

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration: gravitational linear</td>
<td>g</td>
<td>ms^{-2}</td>
</tr>
<tr>
<td>Admittance</td>
<td>Y</td>
<td>S</td>
</tr>
<tr>
<td>Altitude above sea level</td>
<td>z</td>
<td>m</td>
</tr>
<tr>
<td>Amount of substance</td>
<td>n</td>
<td>mol</td>
</tr>
<tr>
<td>Angle: plane solid</td>
<td>$\alpha, \beta, \theta, \phi$</td>
<td>rad, steradian</td>
</tr>
<tr>
<td>Angular acceleration</td>
<td>ω</td>
<td>rad s$^{-2}$</td>
</tr>
<tr>
<td>Angular velocity</td>
<td>ω</td>
<td>rad s$^{-1}$</td>
</tr>
<tr>
<td>Area</td>
<td>A</td>
<td>m^2</td>
</tr>
<tr>
<td>Area, second moment of</td>
<td>I</td>
<td>m^4</td>
</tr>
<tr>
<td>Bulk modulus</td>
<td>K</td>
<td>Nm^{-2}, Pa</td>
</tr>
<tr>
<td>Capacitance</td>
<td>C</td>
<td>μF</td>
</tr>
<tr>
<td>Capacity</td>
<td>V</td>
<td>l, m^3</td>
</tr>
<tr>
<td>Coefficient of friction</td>
<td>μ</td>
<td>No unit</td>
</tr>
<tr>
<td>Coefficient of linear expansion</td>
<td>α</td>
<td>$^\circ C^{-1}$</td>
</tr>
<tr>
<td>Conductance: electrical thermal</td>
<td>G</td>
<td>S</td>
</tr>
<tr>
<td>Conductivity: electrical thermal</td>
<td>α</td>
<td>kSm^{-1}</td>
</tr>
<tr>
<td>Cubical expansion, coefficient of</td>
<td>β</td>
<td>$^\circ C^{-1}$</td>
</tr>
<tr>
<td>Current, electrical</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Current density</td>
<td>J</td>
<td>$A mm^{-2}$</td>
</tr>
<tr>
<td>Density</td>
<td>ρ</td>
<td>$kg m^{-3}$</td>
</tr>
<tr>
<td>Density, relative</td>
<td>d</td>
<td>No unit</td>
</tr>
<tr>
<td>Dryness fraction</td>
<td>x</td>
<td>No unit</td>
</tr>
<tr>
<td>Dynamic viscosity</td>
<td>η</td>
<td>$Ns m^{-2}, cP$</td>
</tr>
<tr>
<td>Efficiency</td>
<td>η</td>
<td>No unit</td>
</tr>
<tr>
<td>Elasticity, modulus of</td>
<td>E</td>
<td>Nm^{-2}, Pa</td>
</tr>
<tr>
<td>Electric field strength</td>
<td>E</td>
<td>$V m^{-1}$</td>
</tr>
<tr>
<td>Electric flux</td>
<td>ϕ</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric flux density</td>
<td>D</td>
<td>$C m^{-2}$</td>
</tr>
<tr>
<td>Energy</td>
<td>W</td>
<td>J</td>
</tr>
<tr>
<td>Energy: internal specific internal</td>
<td>u, e</td>
<td>$kJ kg^{-1}$</td>
</tr>
<tr>
<td>Enthalpy</td>
<td>H</td>
<td>J</td>
</tr>
<tr>
<td>Enthalpy, specific</td>
<td>h</td>
<td>$kJ kg^{-1}$</td>
</tr>
<tr>
<td>Entropy</td>
<td>S</td>
<td>$kJ K^{-1}$</td>
</tr>
<tr>
<td>Expansion, coefficient of cubical</td>
<td>β</td>
<td>$^\circ C^{-1}$</td>
</tr>
<tr>
<td>Expansion, coefficient of linear</td>
<td>α</td>
<td>$^\circ C^{-1}$</td>
</tr>
<tr>
<td>Field strength: electric magnetic</td>
<td>E</td>
<td>$V m^{-1}$</td>
</tr>
<tr>
<td>Flux density: electric magnetic</td>
<td>D</td>
<td>$C m^{-2}$</td>
</tr>
<tr>
<td>Flux: electric magnetic</td>
<td>ψ</td>
<td>C</td>
</tr>
<tr>
<td>Force</td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>Force, resisting</td>
<td>R</td>
<td>N</td>
</tr>
<tr>
<td>Frequency</td>
<td>f</td>
<td>Hz</td>
</tr>
<tr>
<td>Frequency, resonant</td>
<td>J, J</td>
<td>Hz</td>
</tr>
<tr>
<td>Gravitational acceleration</td>
<td>g</td>
<td>ms^{-2}</td>
</tr>
<tr>
<td>Gibbs' function</td>
<td>G</td>
<td>J</td>
</tr>
<tr>
<td>Gibbs' function, specific</td>
<td>g</td>
<td>$kJ kg^{-1}$</td>
</tr>
<tr>
<td>Heat capacity, specific</td>
<td>c</td>
<td>$kJ kg^{-1} K^{-1}$</td>
</tr>
<tr>
<td>Heat flow rate</td>
<td>q, ϕ</td>
<td>W</td>
</tr>
<tr>
<td>Heat flux intensity</td>
<td>ϕ</td>
<td>$kW m^{-2}$</td>
</tr>
<tr>
<td>Illumination</td>
<td>E</td>
<td>lux</td>
</tr>
<tr>
<td>Impedance</td>
<td>Z</td>
<td>Ω</td>
</tr>
<tr>
<td>Inductance: self mutual</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>Internal energy</td>
<td>U, E</td>
<td>J</td>
</tr>
<tr>
<td>Internal energy, specific</td>
<td>u, e</td>
<td>$kJ kg^{-1}$</td>
</tr>
<tr>
<td>Quantity</td>
<td>Symbol</td>
<td>Unit</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>Inertia, moment of</td>
<td>I, J</td>
<td>kg m2</td>
</tr>
<tr>
<td>Kinematic viscosity</td>
<td>v</td>
<td>m2 s$^{-1}$ S.t</td>
</tr>
<tr>
<td>Length</td>
<td>l</td>
<td>m</td>
</tr>
<tr>
<td>Light: velocity of</td>
<td>c</td>
<td>m s$^{-1}$</td>
</tr>
<tr>
<td>Light, wavelength of</td>
<td>λ</td>
<td>m</td>
</tr>
<tr>
<td>Linear expansion,</td>
<td>α</td>
<td>°C$^{-1}$</td>
</tr>
<tr>
<td>coefficient of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminance</td>
<td>L</td>
<td>cd m$^{-2}$</td>
</tr>
<tr>
<td>Luminous flux</td>
<td>ϕ</td>
<td>lm</td>
</tr>
<tr>
<td>Luminous intensity</td>
<td>I</td>
<td>cd</td>
</tr>
<tr>
<td>Magnetic field strength</td>
<td>H</td>
<td>A m$^{-1}$</td>
</tr>
<tr>
<td>Magnetic flux</td>
<td>Φ</td>
<td>Wb</td>
</tr>
<tr>
<td>Magnetic flux density</td>
<td>B</td>
<td>T</td>
</tr>
<tr>
<td>Magnetomotive force</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>Mass:</td>
<td>m</td>
<td>kg</td>
</tr>
<tr>
<td>Mass: rate of flow</td>
<td>\dot{m}</td>
<td>kg s$^{-1}$</td>
</tr>
<tr>
<td>Modulus, bulk</td>
<td>K</td>
<td>N m$^{-2}$</td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>E</td>
<td>N m$^{-2}$</td>
</tr>
<tr>
<td>Modulus of rigidity</td>
<td>G</td>
<td>N m$^{-2}$</td>
</tr>
<tr>
<td>Modulus of section</td>
<td>Z</td>
<td>m3</td>
</tr>
<tr>
<td>Molar mass of gas</td>
<td>M</td>
<td>kg K$^{-1}$ mol$^{-1}$</td>
</tr>
<tr>
<td>Molar volume</td>
<td>V_m</td>
<td>m3 K$^{-1}$ mol$^{-1}$</td>
</tr>
<tr>
<td>Moment of force</td>
<td>M</td>
<td>N-m</td>
</tr>
<tr>
<td>Moment of inertia</td>
<td>I, J</td>
<td>kg-m2</td>
</tr>
<tr>
<td>Mutual inductance</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>Number of turns in a winding</td>
<td>N</td>
<td>No unit</td>
</tr>
<tr>
<td>Periodic time</td>
<td>T</td>
<td>s</td>
</tr>
<tr>
<td>Permeability: absolute</td>
<td>μ</td>
<td>μ H m$^{-1}$</td>
</tr>
<tr>
<td>absolute of free space relative</td>
<td>μ_0</td>
<td>μ H m$^{-1}$</td>
</tr>
<tr>
<td>Permeance</td>
<td>μ_r</td>
<td>H</td>
</tr>
<tr>
<td>Permittivity, absolute</td>
<td>ε</td>
<td>pF m$^{-1}$</td>
</tr>
<tr>
<td>Permittivity of free space</td>
<td>ε_0</td>
<td>pF m$^{-1}$</td>
</tr>
<tr>
<td>Permittivity, relative</td>
<td>ε_r</td>
<td>No unit</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>ν</td>
<td>No unit</td>
</tr>
<tr>
<td>Polar moment of area</td>
<td>J</td>
<td>m4</td>
</tr>
<tr>
<td>Power: apparent</td>
<td>S</td>
<td>V-A</td>
</tr>
<tr>
<td>Power: reactive</td>
<td>P</td>
<td>W</td>
</tr>
<tr>
<td>Pressure</td>
<td>p</td>
<td>N m$^{-2}$, Pa</td>
</tr>
<tr>
<td>Quantity of heat</td>
<td>Q</td>
<td>J</td>
</tr>
<tr>
<td>Quantity of electricity</td>
<td>Q</td>
<td>A-h, C</td>
</tr>
<tr>
<td>Reactance</td>
<td>X</td>
<td>Ω</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reluctance</td>
<td>S</td>
<td>H, A Wb$^{-1}$</td>
</tr>
<tr>
<td>Relative density</td>
<td>d</td>
<td>No unit</td>
</tr>
<tr>
<td>Resistance, electrical</td>
<td>R</td>
<td>Ω</td>
</tr>
<tr>
<td>Resisting force</td>
<td>R</td>
<td>Ω</td>
</tr>
<tr>
<td>Resistance, temperature</td>
<td>α, β, γ</td>
<td>°C$^{-1}$</td>
</tr>
<tr>
<td>coefficients of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistivity: conductors</td>
<td>ρ</td>
<td>MΩ-mm</td>
</tr>
<tr>
<td>insulators</td>
<td>ρ</td>
<td>MΩ-mm</td>
</tr>
<tr>
<td>Resonant frequency</td>
<td>f_r</td>
<td>Hz</td>
</tr>
<tr>
<td>Second moment of area</td>
<td>I</td>
<td>m4</td>
</tr>
<tr>
<td>Self-inductance</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>Shear strain</td>
<td>γ</td>
<td>No unit</td>
</tr>
<tr>
<td>Shear stress</td>
<td>τ</td>
<td>N m$^{-2}$, Pa</td>
</tr>
<tr>
<td>Specific gas constant</td>
<td>R</td>
<td>kJ kg$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>Specific heat capacity</td>
<td>c</td>
<td>kJ kg$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>Specific volume</td>
<td>v</td>
<td>m3 kg$^{-1}$</td>
</tr>
<tr>
<td>Strain, direct</td>
<td>ε</td>
<td>No unit</td>
</tr>
<tr>
<td>Stress, direct</td>
<td>σ</td>
<td>N m$^{-2}$, Pa</td>
</tr>
<tr>
<td>Shear modulus of rigidity</td>
<td>G</td>
<td>N m$^{-2}$, Pa</td>
</tr>
<tr>
<td>Surface tension</td>
<td>γ</td>
<td>N m$^{-1}$</td>
</tr>
<tr>
<td>Susceptance</td>
<td>B</td>
<td>S</td>
</tr>
<tr>
<td>Temperature value</td>
<td>θ</td>
<td>°C</td>
</tr>
<tr>
<td>Temperature coefficients of</td>
<td>α, β, γ</td>
<td>°C$^{-1}$</td>
</tr>
<tr>
<td>resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermodynamic temperature value</td>
<td>T</td>
<td>K</td>
</tr>
<tr>
<td>Time</td>
<td>t</td>
<td>s</td>
</tr>
<tr>
<td>Torque</td>
<td>T</td>
<td>Nm</td>
</tr>
<tr>
<td>Vapour velocity</td>
<td>C</td>
<td>m s$^{-1}$</td>
</tr>
<tr>
<td>Velocity</td>
<td>v</td>
<td>m s$^{-1}$</td>
</tr>
<tr>
<td>Velocity, angular</td>
<td>ω</td>
<td>rad s$^{-1}$</td>
</tr>
<tr>
<td>angular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocity of light</td>
<td>c</td>
<td>m s$^{-1}$</td>
</tr>
<tr>
<td>Velocity of sound</td>
<td>c_s</td>
<td>m s$^{-1}$</td>
</tr>
<tr>
<td>Voltage</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Volume</td>
<td>V</td>
<td>m3</td>
</tr>
<tr>
<td>Volume, rate of flow</td>
<td>V_r</td>
<td>m3 s$^{-1}$</td>
</tr>
<tr>
<td>Viscosity: dynamic</td>
<td>μ, η</td>
<td>N s m$^{-2}$, cP</td>
</tr>
<tr>
<td>kinematic</td>
<td>γ</td>
<td>m2 s$^{-1}$, cSt</td>
</tr>
<tr>
<td>Wavelength</td>
<td>λ</td>
<td>m</td>
</tr>
<tr>
<td>Work</td>
<td>W</td>
<td>J</td>
</tr>
<tr>
<td>Young's modulus of elasticity</td>
<td>E</td>
<td>N m$^{-2}$, Pa</td>
</tr>
</tbody>
</table>
Abbreviations for technical terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Abb.</th>
<th>Term</th>
<th>Abb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute</td>
<td>abs.</td>
<td>High tension</td>
<td>h.t.</td>
</tr>
<tr>
<td>Alternating current</td>
<td>a.c.</td>
<td>High voltage</td>
<td>h.v.</td>
</tr>
<tr>
<td>Aqueous</td>
<td>aq.</td>
<td>Horse power</td>
<td>h.p.</td>
</tr>
<tr>
<td>Atomic number</td>
<td>at. no.</td>
<td>Indicated mean effective pressure</td>
<td>i.m.e.p.</td>
</tr>
<tr>
<td>Atomic weight</td>
<td>at. wt.</td>
<td>Infra-red</td>
<td>i.r.</td>
</tr>
<tr>
<td>Audio frequency</td>
<td>a.f.</td>
<td>Intermediate frequency</td>
<td>i.f.</td>
</tr>
<tr>
<td>Boiling point</td>
<td>b.p.</td>
<td>Internal combustion</td>
<td>i.c., IC</td>
</tr>
<tr>
<td>Bottom dead centre</td>
<td>b.d.c., BDC</td>
<td>Internal combustion engine</td>
<td>i.c.e.</td>
</tr>
<tr>
<td>Brake mean effective pressure</td>
<td>b.m.e.p.</td>
<td>Kinetic energy</td>
<td>k.e.</td>
</tr>
<tr>
<td>Calculated</td>
<td>calc.</td>
<td>Lower calorific value</td>
<td>l.c.v., LCV</td>
</tr>
<tr>
<td>Calorific value</td>
<td>c.v., CV</td>
<td>Low pressure</td>
<td>l.p.</td>
</tr>
<tr>
<td>Cathode-ray oscilloscope</td>
<td>c.r.o.</td>
<td>Low tension</td>
<td>l.t.</td>
</tr>
<tr>
<td>Cathode-ray tube</td>
<td>c.r.t.</td>
<td>Low voltage</td>
<td>l.v.</td>
</tr>
<tr>
<td>Centre of gravity</td>
<td>c.g.</td>
<td>Magnetomotive force</td>
<td>m.m.f.</td>
</tr>
<tr>
<td>Compare</td>
<td>cf.</td>
<td>Maximum</td>
<td>max.</td>
</tr>
<tr>
<td>Computer-aided design</td>
<td>CAD</td>
<td>Mean effective pressure</td>
<td>m.e.p.</td>
</tr>
<tr>
<td>Computer-aided manufacture</td>
<td>CAM</td>
<td>Melting point</td>
<td>m.p.</td>
</tr>
<tr>
<td>Concentrated</td>
<td>conc.</td>
<td>Minimum</td>
<td>min.</td>
</tr>
<tr>
<td>Constant</td>
<td>const.</td>
<td>Moment</td>
<td>mom.</td>
</tr>
<tr>
<td>Corrected</td>
<td>corr.</td>
<td>Numerical control</td>
<td>n.c.</td>
</tr>
<tr>
<td>Critical</td>
<td>crit.</td>
<td>Pitch circle diameter</td>
<td>p.c.d.</td>
</tr>
<tr>
<td>Cross-sectional area</td>
<td>c.s.a.</td>
<td>Potential difference</td>
<td>p.d.</td>
</tr>
<tr>
<td>Decomposition</td>
<td>decomp.</td>
<td>Potential energy</td>
<td>p.e.</td>
</tr>
<tr>
<td>Degree</td>
<td>deg.</td>
<td>Pressure</td>
<td>press.</td>
</tr>
<tr>
<td>Diameter</td>
<td>dia.</td>
<td>Proof stress</td>
<td>p.s.</td>
</tr>
<tr>
<td>Differential coefficient</td>
<td>d.c.</td>
<td>Radian</td>
<td>rad.</td>
</tr>
<tr>
<td>Dilute</td>
<td>dil.</td>
<td>Radio frequency</td>
<td>r.f.</td>
</tr>
<tr>
<td>Direct current</td>
<td>d.c.</td>
<td>Radius</td>
<td>rad.</td>
</tr>
<tr>
<td>Dry flue gas</td>
<td>d.f.g.</td>
<td>Relative density</td>
<td>r.d.</td>
</tr>
<tr>
<td>Elastic limit</td>
<td>e.l.</td>
<td>Relative humidity</td>
<td>r.h.</td>
</tr>
<tr>
<td>Electromotive force</td>
<td>e.m.f.</td>
<td>Root mean square</td>
<td>r.m.s.</td>
</tr>
<tr>
<td>Equation</td>
<td>eqn.</td>
<td>Specific</td>
<td>spec.</td>
</tr>
<tr>
<td>Equivalent</td>
<td>equiv.</td>
<td>Specific gravity</td>
<td>s.g.</td>
</tr>
<tr>
<td>Example</td>
<td>ex.</td>
<td>Standard temperature and pressure</td>
<td>s.t.p.</td>
</tr>
<tr>
<td>Experiment(al)</td>
<td>expt.</td>
<td>Strain energy</td>
<td>s.e.</td>
</tr>
<tr>
<td>Freezing point</td>
<td>f.p.</td>
<td>Temperature</td>
<td>temp.</td>
</tr>
<tr>
<td>Frequency</td>
<td>freq.</td>
<td>Tensile strength</td>
<td>t.s., TS</td>
</tr>
<tr>
<td>Higher calorific value</td>
<td>h.c.v., HCV</td>
<td>Thermocouple</td>
<td>t/c</td>
</tr>
<tr>
<td>High frequency</td>
<td>h.f.</td>
<td>Top dead centre</td>
<td>t.d.c., TDC</td>
</tr>
<tr>
<td>High pressure</td>
<td>h.p.</td>
<td>Ultraviolet</td>
<td>u.v.</td>
</tr>
<tr>
<td>High speed steel</td>
<td>h.s.s.</td>
<td>Ultra-high frequency</td>
<td>u.h.f.</td>
</tr>
<tr>
<td>High tensile</td>
<td>h.t.</td>
<td>Very high frequency</td>
<td>v.h.f.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yield stress</td>
<td>y.s., YS</td>
</tr>
</tbody>
</table>
8.1.3 Abbreviations for units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Abb.</th>
<th>Unit</th>
<th>Abb.</th>
<th>Unit</th>
<th>Abb.</th>
<th>Unit</th>
<th>Abb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>metre</td>
<td>m</td>
<td>steradian</td>
<td>sr</td>
<td>newton</td>
<td>N</td>
<td>mole</td>
<td>mol</td>
</tr>
<tr>
<td>angström</td>
<td>Å</td>
<td>radian per</td>
<td>rad s⁻¹</td>
<td>bar</td>
<td>bar</td>
<td>watt</td>
<td>W</td>
</tr>
<tr>
<td>square metre</td>
<td>m²</td>
<td>second</td>
<td></td>
<td>millibar</td>
<td>mb</td>
<td>decibel</td>
<td>dB</td>
</tr>
<tr>
<td>cubic metre</td>
<td>m³</td>
<td>hertz</td>
<td>Hz</td>
<td>standard</td>
<td>atm</td>
<td>kelvin</td>
<td>K</td>
</tr>
<tr>
<td>litre</td>
<td>l</td>
<td>revolution per</td>
<td>rev. min⁻¹</td>
<td>atmosphere</td>
<td></td>
<td>centigrade</td>
<td>°C</td>
</tr>
<tr>
<td>second</td>
<td>s</td>
<td>minute</td>
<td></td>
<td>millimetre of</td>
<td>mm Hg</td>
<td>coulomb</td>
<td>C</td>
</tr>
<tr>
<td>minute</td>
<td>min</td>
<td>kilogramme</td>
<td>kg</td>
<td>mercury</td>
<td></td>
<td>ampere</td>
<td>A</td>
</tr>
<tr>
<td>hour</td>
<td>h</td>
<td>gramme</td>
<td>g</td>
<td>poise</td>
<td>P</td>
<td>volt</td>
<td>V</td>
</tr>
<tr>
<td>lumen</td>
<td>lm</td>
<td>tonne</td>
<td>t</td>
<td>Stokes</td>
<td>S, St</td>
<td>ohm</td>
<td>Ω</td>
</tr>
<tr>
<td>candela</td>
<td>cd</td>
<td>(= 1 Mg)</td>
<td></td>
<td>joule</td>
<td>J</td>
<td>farad</td>
<td>F</td>
</tr>
<tr>
<td>lux</td>
<td>lx</td>
<td>seimen</td>
<td>S</td>
<td>kilowatt hour</td>
<td>kW-h</td>
<td>henry</td>
<td>H</td>
</tr>
<tr>
<td>day</td>
<td>d</td>
<td>atomic mass</td>
<td>u</td>
<td>electron volt</td>
<td>eV</td>
<td>weber</td>
<td>Wb</td>
</tr>
<tr>
<td>year</td>
<td>a</td>
<td>unit</td>
<td></td>
<td>calorie</td>
<td>cal</td>
<td>tesla</td>
<td>T</td>
</tr>
<tr>
<td>radian</td>
<td>rad</td>
<td>pascal</td>
<td>Pa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.1.4 Multiples and submultiples

<table>
<thead>
<tr>
<th>Multiplying factor</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{12}</td>
<td>tera</td>
<td>T</td>
</tr>
<tr>
<td>10^9</td>
<td>giga</td>
<td>G</td>
</tr>
<tr>
<td>10^6</td>
<td>mega</td>
<td>M</td>
</tr>
<tr>
<td>10^3</td>
<td>kilo</td>
<td>k</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>micro</td>
<td>μ</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>nano</td>
<td>n</td>
</tr>
<tr>
<td>10^{-12}</td>
<td>pico</td>
<td>p</td>
</tr>
<tr>
<td>10^{-15}</td>
<td>femto</td>
<td>f</td>
</tr>
<tr>
<td>10^{-18}</td>
<td>atto</td>
<td>a</td>
</tr>
</tbody>
</table>

8.1.5 SI equivalents for Imperial and US customary units

Abbreviations used

- m = metre
- km = kilometre
- in. = inch
- ft = foot
- yard
- m, mi = mile
- Pa = pascal (N m⁻²)
- psi = pounds per square inch

Length

1 in. = 25.4 mm = 0.0254 m.
1 ft = 305 mm = 0.305 m.
1 yard = 914 mm = 0.914 m.
1 mile = 1609 m = 1.609 km.
1 nautical mile = 1.835 km = 1.14 miles.
1 μm = 10⁻⁶ m.
1 Å = 10⁻¹⁰ m.

Area

1 in.² = 645 mm² = 0.645 x 10⁻³ m².
1 ft² = 9.29 x 10⁴ mm² = 0.0929 m².
1 yard² = 0.836 m².
1 acre = 4047 m².
1 mile² = 2.59 x 10⁶ m² = 2.59 km².
1 hectare = 10⁴ m².

Volume (capacity)

1 in.³ = 16.4 x 10⁻³ mm³ = 16.4 x 10⁻⁶ m³.
1 ft³ = 0.0283 m³.
1 yard³ = 0.765 m³.
1 pint (UK) = 0.568 l.
1 pint (US) = 0.473 l.
1 quart (UK) = 1.137 l.
1 quart (US) = 0.9464 l.
1 gallon (UK) = 1.201 gallon (US) = 4.546 l.
1 gallon (US) = 3.785 l.
1 barrel = 42 gallons (US) = 159 l.
1 cm³ = 10⁻⁶ m³.
1 dm³ = 10⁰ m³.
1 l = 10³ cm³.
1 m³ = 10⁶ cm³.

Mass

1 lbm = 0.454 kg.
1 slug = 32.17 lbm = 14.6 kg.
1 ton (US or 'short') = 2000 lbm = 907.2 kg.
1 ton (UK or 'long') = 2240 lbm = 1016 kg.
1 tonne (metric ton) = 1000 kg

Density

1 lb in.⁻³ = 27 680 kg m⁻³.
1 lb ft⁻³ = 16.02 kg m⁻³.
1 slug ft⁻³ = 515.4 kg m⁻³.

Velocity

1 in. s⁻¹ = 0.0254 m s⁻¹.
1 ft s⁻¹ = 0.3048 m s⁻¹.
1 ft min⁻¹ = 0.00508 m s⁻¹.
1 mile s⁻¹ = 0.447 m s⁻¹ = 1.61 km h⁻¹.
1 km h⁻¹ = 0.719 m s⁻¹.
1 knot = 1 nautical mile/hour = 0.515 m s⁻¹.

Mass flow rate

1 lbm s⁻¹ = 0.454 kg s⁻¹.
1 lbm h⁻¹ = 1.26 x 10⁻⁴ kg s⁻¹.
1 ton h⁻¹ = 0.282 kg s⁻¹.
1 slug s⁻¹ = 14.6 kg s⁻¹.

Volume flow rate

1 ft³ s⁻¹ = 0.283 m³ s⁻¹.
1 UK gallon sec⁻¹ = 0.00455 m³ s⁻¹.
1 US gallon s⁻¹ = 0.00379 m³ s⁻¹.
1 UK gallon min⁻¹ = 7.58 x 10⁻⁵ m³ s⁻¹.
1 US gallon min⁻¹ = 6.31 x 10⁻⁵ m³ s⁻¹.

Force

1 lbf = 4.45 N.
1 kip (1000 lbf) = 4.45 kN.
1 tonf = 9964 N.
1 poundal = 1.38 N.
1 dyne = 10⁻⁵ N.

Stress or pressure

1 lb in.⁻² (psi) = 6895 N m⁻² (Pa).
1 lb ft⁻² (psf) = 47.9 N m⁻².
1 kip in.⁻² (ksi) = 6895 kN m⁻² (kPa).
1 kip ft⁻² (ksf) = 47.9 kN m⁻² (kPa).
1 poundal ft⁻² = 1.49 N m⁻².
1 tonf in.⁻² = 15.44 x 10⁵ N m⁻².
1 tonf ft⁻² = 1.073 x 10⁶ N m⁻².
1 in. water (39.2°F) = 249 N m⁻².
1 ft water (39.2°F) = 2989 N m⁻².
1 in. mercury = 3386 N m⁻².
1 atmos = 14.7 psi = 1.01325 x 10⁵ N m⁻².
1 MPa = 10⁶ N m⁻² = 1 N mm⁻².
1 bar = 10⁵ N m⁻².

Work and energy

1 in. lbf = 0.113 J (Nm).
1 ft lbf = 1.365 J.
1 Btu = 778 ft lbf = 252 calories = 1055 J.
1 cal = 4.186 J.
1 kcal = 4.186 kJ.
8.2 Fasteners

8.2.1 Bolt and screw types

Bolts

Bolts are used for fastening machine parts together often in conjunction with nuts and washers to form non-permanent connections. The bolt head is usually hexagonal, but may be square or round. The ‘shank’ may be screwed for part or the whole of its length, in the latter case it is sometimes called a ‘screw’ or ‘machine screw’.

Most bolts are made of low or medium carbon steel by forging or machining with threads cut or rolled. Forged bolts are called ‘black’ and machined bolts ‘bright’. They are also made in high tensile, alloy and stainless steels as well as non-ferrous metals and alloys, and plastics. Bolts may be plated or galvanized to prevent corrosion.

In the UK, metric threads (ISOM) have largely replaced BSW and BSF threads. For small sizes British Association (BA) threads are used. In the USA, the most used threads are ‘unified fine’ (UNF) and ‘unified coarse’ (UNC).

<table>
<thead>
<tr>
<th>Hexagonal head bolt</th>
<th>Square head bolt</th>
</tr>
</thead>
</table>

8.2.2 Bolted joint (through bolt) application

- **Stud (stud bolt)**
- **Stud application**
- **Studding**
Uniform strength bolts

Square neck Ribbed neck Serrated neck
Coach bolts (carriage bolts)

Hexagon socket head screw

Hexagon socket wrench (Allen key)

Socket button head screw

Socket countersunk head screw

Socket shoulder head screw

T bolt and application

Snug Recess

Cheese head bolt

Eye bolt

U bolt

Indented foundation bolt

Rag bolt

Rawlbolt
Screws

The term 'screw' is applied to a wide range of threaded fasteners used with metal, wood, plastics, etc. Screws have a variety of types of head and are made in many materials (steel, brass, nylon, etc.), some are plated. Small screws usually have BA threads and special threads are used for wood and self-tapping screws.

8.2.2 Nuts and washers

Nuts are usually hexagonal, but may be square or round. Steel hexagon nuts may be ‘black’ or ‘bright’ and have one or both faces chamfered. Washers are used to distribute load and prevent damage to a surface. They are mostly of steel, but brass, copper, aluminium, fibre, leather and plastics are used.

A wide variety of lock washers and locking devices are available, including adhesives such as ‘Loctite’.
Wing nut

Barrel nut

Welded type barrel nut

Elastic stop nut (NYLOC nut)

Spring lock nut (compression stop nut)

Locked nuts (jam nuts)

Captive nut

Slotted nut

Before fitting

Fitted

Castle nut

Split nut

Stamped spring nut

Plain washer (flat washer)

Taper washer and application
8.2.3 **Rivets and pins**

Rivets

Rivets are used to make permanent joints between two or more plates. Steel rivets may be closed when red hot; rivets of softer metals such as aluminium and copper may be closed cold. There are a number of types of riveted joint configurations for plates, two of which are shown in the figure.

Types of rivet

- **Snap**
- **Pan**
- **Pan head taper neck**
- **Countersunk**
- **Round head countersunk**
- **Flat**
- **Conical**

Before fitting

Fitted

Tab washer

Tab washer—application

Tubular rivet

Flush rivet

Rivet

Pop rivet
The term 'pin' refers to a large number of components used for fixing, locating and load carrying. Dowel pins are used to locate accurately one part relative to another. Taper pins fit into taper holes and are often used for light shaft couplings. A grooved pin has grooves with raised edges to give a tight fit in a hole. The roll pin is a spring steel tube which closes to give a tight fit. Split pins are used mainly for locking nuts. Cotter pins are used to connect rods in tension and fits into mating slots.
8.2.4 ISO metric nut and bolt sizes

ISO metric precision hexagon nuts and bolts (all quantities) (in mm)

<table>
<thead>
<tr>
<th>D</th>
<th>p_t</th>
<th>f_{max}</th>
<th>c_{max}</th>
<th>h_{max}</th>
<th>L_{min}</th>
<th>t_{1max}</th>
<th>t_{2max}</th>
<th>p_c</th>
<th>A_b</th>
<th>D_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.6</td>
<td>0.35</td>
<td>3.2</td>
<td>3.7</td>
<td>1.225</td>
<td>9.2</td>
<td>1.3</td>
<td>—</td>
<td>0.35</td>
<td>0.795</td>
<td>1.25</td>
</tr>
<tr>
<td>M2</td>
<td>0.4</td>
<td>4</td>
<td>4.6</td>
<td>1.525</td>
<td>10</td>
<td>1.6</td>
<td>—</td>
<td>0.4</td>
<td>1.53</td>
<td>1.6</td>
</tr>
<tr>
<td>M2.5</td>
<td>0.45</td>
<td>5</td>
<td>5.8</td>
<td>1.825</td>
<td>11</td>
<td>2</td>
<td>—</td>
<td>0.45</td>
<td>2.61</td>
<td>2.05</td>
</tr>
<tr>
<td>M3</td>
<td>0.5</td>
<td>5.5</td>
<td>6.4</td>
<td>2.125</td>
<td>12</td>
<td>2.4</td>
<td>—</td>
<td>0.5</td>
<td>4.0</td>
<td>2.5</td>
</tr>
<tr>
<td>M4</td>
<td>0.7</td>
<td>7</td>
<td>8.1</td>
<td>2.925</td>
<td>14</td>
<td>3.2</td>
<td>—</td>
<td>0.7</td>
<td>6.82</td>
<td>3.3</td>
</tr>
<tr>
<td>M5</td>
<td>0.8</td>
<td>8</td>
<td>9.2</td>
<td>3.65</td>
<td>16</td>
<td>4</td>
<td>—</td>
<td>0.8</td>
<td>11.3</td>
<td>4.2</td>
</tr>
<tr>
<td>M6</td>
<td>1</td>
<td>10</td>
<td>11.5</td>
<td>4.15</td>
<td>18</td>
<td>5</td>
<td>—</td>
<td>1</td>
<td>15.8</td>
<td>5</td>
</tr>
<tr>
<td>M8</td>
<td>1.25</td>
<td>13</td>
<td>15</td>
<td>5.65</td>
<td>22</td>
<td>6.5</td>
<td>5.0</td>
<td>1.25</td>
<td>30.0</td>
<td>6.8</td>
</tr>
<tr>
<td>M10</td>
<td>1.5</td>
<td>17</td>
<td>19.6</td>
<td>7.18</td>
<td>26</td>
<td>8</td>
<td>6.0</td>
<td>1.5</td>
<td>48</td>
<td>8.5</td>
</tr>
<tr>
<td>M12</td>
<td>1.75</td>
<td>19</td>
<td>21.9</td>
<td>8.18</td>
<td>30</td>
<td>10</td>
<td>7.0</td>
<td>1.75</td>
<td>70.5</td>
<td>10.2</td>
</tr>
<tr>
<td>M16</td>
<td>2</td>
<td>24</td>
<td>27.7</td>
<td>10.18</td>
<td>38</td>
<td>13</td>
<td>8.0</td>
<td>2</td>
<td>136</td>
<td>14</td>
</tr>
<tr>
<td>M20</td>
<td>2.5</td>
<td>30</td>
<td>34.6</td>
<td>13.215</td>
<td>46</td>
<td>16</td>
<td>9.0</td>
<td>2.5</td>
<td>212</td>
<td>17.5</td>
</tr>
<tr>
<td>M24</td>
<td>3</td>
<td>36</td>
<td>41.6</td>
<td>15.215</td>
<td>54</td>
<td>19</td>
<td>10.0</td>
<td>3</td>
<td>305</td>
<td>21</td>
</tr>
<tr>
<td>M30</td>
<td>3.5</td>
<td>46</td>
<td>53.1</td>
<td>19.26</td>
<td>66</td>
<td>24</td>
<td>12.0</td>
<td>3.5</td>
<td>492</td>
<td>26.5</td>
</tr>
<tr>
<td>M36</td>
<td>4</td>
<td>55</td>
<td>63.5</td>
<td>23.26</td>
<td>78</td>
<td>29</td>
<td>14.0</td>
<td>4</td>
<td>722</td>
<td>32</td>
</tr>
<tr>
<td>M42</td>
<td>4.5</td>
<td>65</td>
<td>75.1</td>
<td>26.26</td>
<td>90</td>
<td>34</td>
<td>16.0</td>
<td>4.5</td>
<td>1007</td>
<td>37.5</td>
</tr>
<tr>
<td>M48</td>
<td>5</td>
<td>75</td>
<td>86.6</td>
<td>30.26</td>
<td>102</td>
<td>38</td>
<td>18.0</td>
<td>5</td>
<td>1330</td>
<td>43</td>
</tr>
<tr>
<td>M56</td>
<td>5.5</td>
<td>85</td>
<td>98.1</td>
<td>35.31</td>
<td>118</td>
<td>46</td>
<td>—</td>
<td>5.5</td>
<td>1830</td>
<td>50.5</td>
</tr>
<tr>
<td>M64</td>
<td>6</td>
<td>95</td>
<td>109.7</td>
<td>40.31</td>
<td>134</td>
<td>51</td>
<td>—</td>
<td>6</td>
<td>2430</td>
<td>58</td>
</tr>
</tbody>
</table>

- $D = \text{nominal diameter}$
- $L_{min} = \text{minimum length of thread}$
- $p_t = \text{pitch (fine series)}$
- $p_c = \text{pitch (coarse series)}$
- $t_1 = \text{thickness of normal nut}$
- $t_2 = \text{thickness of thin nut}$
- $f = \text{width across flats}$
- $c = \text{width across corners}$
- $h = \text{height of head}$
- $A_b = \text{area at bottom of thread}$
- $D_1 = \text{tapping drill diameter for coarse thread}$
- $L = \text{bolt length}$

Standard bolt lengths (L)

20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 90, 100, 110, 120, 130, 140, 150

Standard screw lengths

10, 12, 16, 18, 20, 22, 25, 30, 35, 40, 45, 50, 55, 60, 70.
8.2.5 Clearance holes for bolts

Clearance holes for metric bolts

<table>
<thead>
<tr>
<th>Bolt size, (D) (mm)</th>
<th>Clearance hole diameter, (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fine</td>
</tr>
<tr>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>2</td>
<td>2.2</td>
</tr>
<tr>
<td>2.5</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>4.3</td>
</tr>
<tr>
<td>5</td>
<td>5.3</td>
</tr>
<tr>
<td>6</td>
<td>6.4</td>
</tr>
<tr>
<td>7</td>
<td>7.4</td>
</tr>
<tr>
<td>8</td>
<td>8.4</td>
</tr>
<tr>
<td>10</td>
<td>10.5</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>39</td>
<td>40</td>
</tr>
</tbody>
</table>

8.2.6 British Association (BA) screw threads

<table>
<thead>
<tr>
<th>No.</th>
<th>Major diameter (mm)</th>
<th>Pitch (mm)</th>
<th>Core diameter (mm)</th>
<th>Area at bottom of thread (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.0</td>
<td>1.0</td>
<td>4.80</td>
<td>18.10</td>
</tr>
<tr>
<td>1</td>
<td>5.3</td>
<td>0.9</td>
<td>4.22</td>
<td>13.99</td>
</tr>
<tr>
<td>2</td>
<td>4.7</td>
<td>0.81</td>
<td>3.73</td>
<td>10.93</td>
</tr>
<tr>
<td>3</td>
<td>4.1</td>
<td>0.73</td>
<td>3.22</td>
<td>8.14</td>
</tr>
<tr>
<td>4</td>
<td>3.6</td>
<td>0.66</td>
<td>2.81</td>
<td>6.20</td>
</tr>
<tr>
<td>5</td>
<td>3.2</td>
<td>0.59</td>
<td>2.49</td>
<td>4.87</td>
</tr>
<tr>
<td>6</td>
<td>2.8</td>
<td>0.53</td>
<td>2.16</td>
<td>3.66</td>
</tr>
<tr>
<td>7</td>
<td>2.5</td>
<td>0.48</td>
<td>1.92</td>
<td>2.89</td>
</tr>
<tr>
<td>8</td>
<td>2.2</td>
<td>0.43</td>
<td>1.68</td>
<td>2.22</td>
</tr>
<tr>
<td>9</td>
<td>1.9</td>
<td>0.39</td>
<td>1.43</td>
<td>1.61</td>
</tr>
<tr>
<td>10</td>
<td>1.7</td>
<td>0.35</td>
<td>1.28</td>
<td>1.29</td>
</tr>
<tr>
<td>11</td>
<td>1.5</td>
<td>0.31</td>
<td>1.13</td>
<td>1.00</td>
</tr>
<tr>
<td>12</td>
<td>1.3</td>
<td>0.28</td>
<td>0.96</td>
<td>0.72</td>
</tr>
<tr>
<td>13</td>
<td>1.2</td>
<td>0.25</td>
<td>0.90</td>
<td>0.64</td>
</tr>
<tr>
<td>14</td>
<td>1.0</td>
<td>0.23</td>
<td>0.72</td>
<td>0.41</td>
</tr>
<tr>
<td>15</td>
<td>0.9</td>
<td>0.21</td>
<td>0.65</td>
<td>0.33</td>
</tr>
<tr>
<td>16</td>
<td>0.79</td>
<td>0.19</td>
<td>0.56</td>
<td>0.25</td>
</tr>
<tr>
<td>17</td>
<td>0.70</td>
<td>0.17</td>
<td>0.50</td>
<td>0.20</td>
</tr>
<tr>
<td>18</td>
<td>0.62</td>
<td>0.15</td>
<td>0.44</td>
<td>0.15</td>
</tr>
<tr>
<td>19</td>
<td>0.54</td>
<td>0.14</td>
<td>0.37</td>
<td>0.11</td>
</tr>
<tr>
<td>20</td>
<td>0.48</td>
<td>0.12</td>
<td>0.34</td>
<td>0.091</td>
</tr>
<tr>
<td>21</td>
<td>0.42</td>
<td>0.11</td>
<td>0.29</td>
<td>0.066</td>
</tr>
<tr>
<td>22</td>
<td>0.37</td>
<td>0.10</td>
<td>0.25</td>
<td>0.049</td>
</tr>
<tr>
<td>23</td>
<td>0.33</td>
<td>0.09</td>
<td>0.22</td>
<td>0.038</td>
</tr>
<tr>
<td>24</td>
<td>0.29</td>
<td>0.08</td>
<td>0.19</td>
<td>0.028</td>
</tr>
<tr>
<td>25</td>
<td>0.25</td>
<td>0.07</td>
<td>0.17</td>
<td>0.023</td>
</tr>
</tbody>
</table>
8.2.7 Unified screw threads

<table>
<thead>
<tr>
<th>Size designation</th>
<th>Nominal major diameter</th>
<th>Coarse series (UNC)</th>
<th>Fine series (UNF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in.</td>
<td>mm</td>
<td>No. threads</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>per inch</td>
</tr>
<tr>
<td>0</td>
<td>0.0600</td>
<td>1.524</td>
<td>64</td>
</tr>
<tr>
<td>1</td>
<td>0.0730</td>
<td>1.854</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>0.0860</td>
<td>2.184</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>0.0990</td>
<td>2.515</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>0.1120</td>
<td>2.845</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>0.1250</td>
<td>3.175</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>0.1380</td>
<td>3.505</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>0.1640</td>
<td>4.166</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>0.1900</td>
<td>4.826</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>0.2160</td>
<td>5.486</td>
<td>24</td>
</tr>
<tr>
<td>1/4</td>
<td>0.2500</td>
<td>6.350</td>
<td>20</td>
</tr>
<tr>
<td>5/16</td>
<td>0.3125</td>
<td>7.938</td>
<td>18</td>
</tr>
<tr>
<td>3/8</td>
<td>0.3750</td>
<td>9.525</td>
<td>16</td>
</tr>
<tr>
<td>7/16</td>
<td>0.4375</td>
<td>11.11</td>
<td>14</td>
</tr>
<tr>
<td>1/2</td>
<td>0.5000</td>
<td>12.70</td>
<td>13</td>
</tr>
<tr>
<td>9/16</td>
<td>0.5625</td>
<td>14.29</td>
<td>12</td>
</tr>
<tr>
<td>5/8</td>
<td>0.6250</td>
<td>15.88</td>
<td>11</td>
</tr>
<tr>
<td>3/4</td>
<td>0.7500</td>
<td>19.05</td>
<td>10</td>
</tr>
<tr>
<td>7/8</td>
<td>0.8750</td>
<td>22.23</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1.0000</td>
<td>25.40</td>
<td>8</td>
</tr>
<tr>
<td>1(\frac{1}{2})</td>
<td>1.2500</td>
<td>31.75</td>
<td>7</td>
</tr>
<tr>
<td>1(\frac{3}{4})</td>
<td>1.5000</td>
<td>38.10</td>
<td>6</td>
</tr>
</tbody>
</table>

8.2.8 Pipe threads

BSP pipe threads (BS 2779: 1973) – Whitworth thread form

<table>
<thead>
<tr>
<th>Nominal size (in.)</th>
<th>Threads per inch</th>
<th>Pitch (mm)</th>
<th>Major diameter (mm)</th>
<th>Minor diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/16</td>
<td>28</td>
<td>0.907</td>
<td>7.723</td>
<td>6.561</td>
</tr>
<tr>
<td>1/8</td>
<td>28</td>
<td>0.907</td>
<td>9.728</td>
<td>8.566</td>
</tr>
<tr>
<td>1/4</td>
<td>19</td>
<td>1.337</td>
<td>13.157</td>
<td>11.445</td>
</tr>
<tr>
<td>3/4</td>
<td>19</td>
<td>1.337</td>
<td>16.662</td>
<td>14.950</td>
</tr>
<tr>
<td>1/2</td>
<td>14</td>
<td>1.814</td>
<td>20.955</td>
<td>18.631</td>
</tr>
<tr>
<td>5/8</td>
<td>14</td>
<td>1.814</td>
<td>22.911</td>
<td>20.587</td>
</tr>
<tr>
<td>3/4</td>
<td>14</td>
<td>1.814</td>
<td>26.441</td>
<td>24.117</td>
</tr>
<tr>
<td>7/8</td>
<td>14</td>
<td>1.814</td>
<td>30.201</td>
<td>27.877</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>2.309</td>
<td>33.249</td>
<td>30.291</td>
</tr>
<tr>
<td>1(\frac{1}{2})</td>
<td>11</td>
<td>2.309</td>
<td>37.897</td>
<td>34.939</td>
</tr>
<tr>
<td>1(\frac{3}{4})</td>
<td>11</td>
<td>2.309</td>
<td>41.910</td>
<td>38.952</td>
</tr>
</tbody>
</table>
BSP pipe threads (BS 2779: 1973) – Whitworth thread form (continued)

<table>
<thead>
<tr>
<th>Nominal size (in.)</th>
<th>Threads per inch</th>
<th>Pitch (mm)</th>
<th>Major diameter (mm)</th>
<th>Minor diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (\frac{1}{8})</td>
<td>11</td>
<td>2.309</td>
<td>47.803</td>
<td>44.845</td>
</tr>
<tr>
<td>1 (\frac{1}{4})</td>
<td>11</td>
<td>2.309</td>
<td>53.746</td>
<td>50.788</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>2.309</td>
<td>59.614</td>
<td>56.656</td>
</tr>
<tr>
<td>2 (\frac{1}{4})</td>
<td>11</td>
<td>2.309</td>
<td>65.710</td>
<td>62.752</td>
</tr>
<tr>
<td>2 (\frac{1}{2})</td>
<td>11</td>
<td>2.309</td>
<td>75.189</td>
<td>72.226</td>
</tr>
<tr>
<td>2 (\frac{3}{4})</td>
<td>11</td>
<td>2.309</td>
<td>81.534</td>
<td>78.576</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>2.309</td>
<td>87.884</td>
<td>84.926</td>
</tr>
<tr>
<td>3 (\frac{1}{2})</td>
<td>11</td>
<td>2.309</td>
<td>100.330</td>
<td>97.372</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>2.309</td>
<td>113.030</td>
<td>110.072</td>
</tr>
<tr>
<td>4 (\frac{1}{2})</td>
<td>11</td>
<td>2.309</td>
<td>125.73</td>
<td>122.772</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>2.309</td>
<td>138.43</td>
<td>135.472</td>
</tr>
<tr>
<td>5 (\frac{1}{2})</td>
<td>11</td>
<td>2.309</td>
<td>151.13</td>
<td>148.172</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>2.309</td>
<td>163.83</td>
<td>160.372</td>
</tr>
</tbody>
</table>

8.2.9 Rectangular BS keys

Dimensions (mm)

<table>
<thead>
<tr>
<th>Shaft diameter,</th>
<th>Key</th>
<th>Depth in shaft,</th>
<th>Depth in hub,</th>
<th>Radius, (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D)</td>
<td>(b \times d)</td>
<td>(d_1)</td>
<td>(d_2)</td>
<td>Max.</td>
</tr>
<tr>
<td>6–8</td>
<td>2 (\times) 2</td>
<td>1.2</td>
<td>1</td>
<td>0.16</td>
</tr>
<tr>
<td>8–10</td>
<td>3 (\times) 3</td>
<td>1.8</td>
<td>1.4</td>
<td>0.16</td>
</tr>
<tr>
<td>10–12</td>
<td>4 (\times) 4</td>
<td>2.5</td>
<td>1.8</td>
<td>0.16</td>
</tr>
<tr>
<td>12–17</td>
<td>5 (\times) 5</td>
<td>3</td>
<td>2.3</td>
<td>0.25</td>
</tr>
<tr>
<td>17–22</td>
<td>6 (\times) 6</td>
<td>3.5</td>
<td>2.8</td>
<td>0.25</td>
</tr>
<tr>
<td>22–30</td>
<td>8 (\times) 7</td>
<td>4</td>
<td>3.3</td>
<td>0.25</td>
</tr>
<tr>
<td>30–38</td>
<td>10 (\times) 8</td>
<td>5</td>
<td>3.3</td>
<td>0.40</td>
</tr>
<tr>
<td>38–44</td>
<td>12 (\times) 8</td>
<td>5</td>
<td>3.3</td>
<td>0.40</td>
</tr>
<tr>
<td>44–50</td>
<td>14 (\times) 9</td>
<td>5.5</td>
<td>3.8</td>
<td>0.40</td>
</tr>
<tr>
<td>50–58</td>
<td>16 (\times) 10</td>
<td>6</td>
<td>4.3</td>
<td>0.40</td>
</tr>
<tr>
<td>58–65</td>
<td>18 (\times) 11</td>
<td>7</td>
<td>4.4</td>
<td>0.40</td>
</tr>
<tr>
<td>65–75</td>
<td>20 (\times) 12</td>
<td>7.5</td>
<td>4.9</td>
<td>0.60</td>
</tr>
<tr>
<td>75–85</td>
<td>22 (\times) 14</td>
<td>9</td>
<td>5.4</td>
<td>0.60</td>
</tr>
<tr>
<td>85–95</td>
<td>25 (\times) 14</td>
<td>9</td>
<td>5.4</td>
<td>0.60</td>
</tr>
<tr>
<td>95–110</td>
<td>28 (\times) 16</td>
<td>10</td>
<td>6.4</td>
<td>0.60</td>
</tr>
<tr>
<td>110–130</td>
<td>32 (\times) 18</td>
<td>11</td>
<td>7.4</td>
<td>0.60</td>
</tr>
<tr>
<td>130–150</td>
<td>36 (\times) 20</td>
<td>12</td>
<td>8.4</td>
<td>1.00</td>
</tr>
<tr>
<td>150–170</td>
<td>40 (\times) 22</td>
<td>13</td>
<td>9.4</td>
<td>1.00</td>
</tr>
<tr>
<td>170–200</td>
<td>45 (\times) 25</td>
<td>15</td>
<td>10.4</td>
<td>1.00</td>
</tr>
<tr>
<td>200–230</td>
<td>50 (\times) 28</td>
<td>17</td>
<td>11.4</td>
<td>1.00</td>
</tr>
<tr>
<td>230–260</td>
<td>56 (\times) 32</td>
<td>20</td>
<td>12.4</td>
<td>1.60</td>
</tr>
<tr>
<td>260–290</td>
<td>63 (\times) 32</td>
<td>20</td>
<td>12.4</td>
<td>1.60</td>
</tr>
<tr>
<td>290–330</td>
<td>70 (\times) 36</td>
<td>22</td>
<td>14.4</td>
<td>1.60</td>
</tr>
<tr>
<td>330–380</td>
<td>80 (\times) 40</td>
<td>25</td>
<td>15.4</td>
<td>2.50</td>
</tr>
<tr>
<td>380–440</td>
<td>90 (\times) 45</td>
<td>28</td>
<td>17.4</td>
<td>2.50</td>
</tr>
<tr>
<td>440–500</td>
<td>100 (\times) 50</td>
<td>31</td>
<td>19.5</td>
<td>2.50</td>
</tr>
</tbody>
</table>
8.2.10 ISO straight-sided splines

Dimensions (mm)

<table>
<thead>
<tr>
<th>Light series</th>
<th>Medium series</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_o</td>
<td>D_i</td>
</tr>
<tr>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td>36</td>
<td>32</td>
</tr>
<tr>
<td>40</td>
<td>36</td>
</tr>
<tr>
<td>46</td>
<td>42</td>
</tr>
<tr>
<td>50</td>
<td>46</td>
</tr>
<tr>
<td>58</td>
<td>52</td>
</tr>
<tr>
<td>62</td>
<td>56</td>
</tr>
<tr>
<td>68</td>
<td>62</td>
</tr>
<tr>
<td>78</td>
<td>72</td>
</tr>
<tr>
<td>83</td>
<td>82</td>
</tr>
<tr>
<td>98</td>
<td>92</td>
</tr>
<tr>
<td>103</td>
<td>102</td>
</tr>
<tr>
<td>120</td>
<td>112</td>
</tr>
</tbody>
</table>

$n =$ number of splines.
8.3 Engineering stock

8.3.1 Circular, square and rectangular hollow steel sections

\[M = \text{mass per unit length} \]
\[A = \text{cross-sectional area} \]
\[I_x = \text{second moment of area about axis XX} \]
\[I_y = \text{second moment of area about axis YY} \]

Circular hollow steel sections (BS 4848: Part 2)

<table>
<thead>
<tr>
<th>(D_o) (mm)</th>
<th>(t) (mm)</th>
<th>(M) (kg m(^{-1}))</th>
<th>(A) (cm(^2))</th>
<th>(I_x) (cm(^4))</th>
<th>(D_o) (mm)</th>
<th>(t) (mm)</th>
<th>(M) (kg m(^{-1}))</th>
<th>(A) (cm(^2))</th>
<th>(I_x) (cm(^4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.3</td>
<td>3.2</td>
<td>1.43</td>
<td>1.82</td>
<td>0.77</td>
<td>139.7</td>
<td>5.0</td>
<td>16.6</td>
<td>21.2</td>
<td>481</td>
</tr>
<tr>
<td>26.9</td>
<td>3.2</td>
<td>1.87</td>
<td>2.38</td>
<td>1.70</td>
<td>6.3</td>
<td>20.7</td>
<td>26.4</td>
<td>589</td>
<td></td>
</tr>
<tr>
<td>33.7</td>
<td>2.6</td>
<td>1.99</td>
<td>2.54</td>
<td>3.09</td>
<td>8.0</td>
<td>26.0</td>
<td>33.1</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>2.41</td>
<td>3.07</td>
<td>3.60</td>
<td>10.0</td>
<td>32.0</td>
<td>40.7</td>
<td>862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>2.93</td>
<td>3.73</td>
<td>4.19</td>
<td>168.3</td>
<td>5.0</td>
<td>20.1</td>
<td>25.7</td>
<td>856</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>2.55</td>
<td>3.25</td>
<td>6.46</td>
<td>8.0</td>
<td>31.6</td>
<td>40.3</td>
<td>1297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>3.99</td>
<td>3.94</td>
<td>7.62</td>
<td>10.0</td>
<td>39.0</td>
<td>49.7</td>
<td>1564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>3.79</td>
<td>4.83</td>
<td>8.99</td>
<td>193.7</td>
<td>5.4</td>
<td>25.1</td>
<td>31.9</td>
<td>1417</td>
<td></td>
</tr>
<tr>
<td>48.3</td>
<td>3.2</td>
<td>3.56</td>
<td>4.53</td>
<td>11.60</td>
<td>6.3</td>
<td>29.1</td>
<td>37.1</td>
<td>1630</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>4.37</td>
<td>5.57</td>
<td>13.8</td>
<td>8.0</td>
<td>36.6</td>
<td>46.7</td>
<td>2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>5.34</td>
<td>6.80</td>
<td>16.2</td>
<td>10.0</td>
<td>45.3</td>
<td>57.7</td>
<td>2442</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.3</td>
<td>3.2</td>
<td>4.51</td>
<td>5.74</td>
<td>23.5</td>
<td>12.5</td>
<td>55.9</td>
<td>71.2</td>
<td>2934</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>5.55</td>
<td>7.07</td>
<td>28.2</td>
<td>16.0</td>
<td>70.1</td>
<td>89.3</td>
<td>3554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>6.82</td>
<td>8.69</td>
<td>33.5</td>
<td>219.1</td>
<td>6.3</td>
<td>33.1</td>
<td>42.1</td>
<td>2386</td>
<td></td>
</tr>
<tr>
<td>76.1</td>
<td>3.2</td>
<td>5.75</td>
<td>7.33</td>
<td>48.8</td>
<td>8.0</td>
<td>41.6</td>
<td>53.1</td>
<td>2960</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>7.11</td>
<td>9.06</td>
<td>59.1</td>
<td>10.0</td>
<td>51.6</td>
<td>65.7</td>
<td>3598</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>8.77</td>
<td>11.2</td>
<td>70.9</td>
<td>12.5</td>
<td>63.7</td>
<td>81.1</td>
<td>4345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.9</td>
<td>3.2</td>
<td>6.76</td>
<td>8.62</td>
<td>79.2</td>
<td>16.0</td>
<td>80.1</td>
<td>102</td>
<td>5297</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>8.38</td>
<td>10.7</td>
<td>96.3</td>
<td>20.0</td>
<td>98.2</td>
<td>125</td>
<td>6261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>10.3</td>
<td>13.2</td>
<td>116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>16.8</td>
<td>21.4</td>
<td>313</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Diagram of a hollow steel section with labels for \(D_o\), \(t\), \(x\), and \(y\).]
Hollow square steel sections (BS 4848: Part 2)

<table>
<thead>
<tr>
<th>(D) (mm)</th>
<th>(t) (mm)</th>
<th>(M) (kg.m(^{-1}))</th>
<th>(A) (cm(^2))</th>
<th>(I_X) (cm(^4))</th>
<th>(D) (mm)</th>
<th>(t) (mm)</th>
<th>(M) (kg.m(^{-1}))</th>
<th>(A) (cm(^2))</th>
<th>(I_X) (cm(^4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>2.0</td>
<td>1.12</td>
<td>1.42</td>
<td>0.76</td>
<td>120</td>
<td>5.0</td>
<td>18.0</td>
<td>22.9</td>
<td>503</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>1.39</td>
<td>1.78</td>
<td>0.88</td>
<td></td>
<td>6.3</td>
<td>22.3</td>
<td>28.5</td>
<td>610</td>
</tr>
<tr>
<td>25</td>
<td>2.0*</td>
<td>1.43</td>
<td>1.82</td>
<td>1.59</td>
<td>25</td>
<td>8.0</td>
<td>27.9</td>
<td>35.5</td>
<td>738</td>
</tr>
<tr>
<td></td>
<td>2.6*</td>
<td>1.80</td>
<td>2.30</td>
<td>1.90</td>
<td></td>
<td>10</td>
<td>34.2</td>
<td>43.5</td>
<td>870</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>2.15</td>
<td>2.74</td>
<td>2.14</td>
<td>140</td>
<td>5.0*</td>
<td>21.1</td>
<td>26.9</td>
<td>814</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>2.21</td>
<td>2.82</td>
<td>3.49</td>
<td></td>
<td>6.3*</td>
<td>26.3</td>
<td>33.5</td>
<td>994</td>
</tr>
<tr>
<td></td>
<td>2.9*</td>
<td>2.44</td>
<td>3.10</td>
<td>3.76</td>
<td></td>
<td>8.0*</td>
<td>32.9</td>
<td>41.9</td>
<td>1212</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>2.65</td>
<td>3.38</td>
<td>4.00</td>
<td></td>
<td>10*</td>
<td>40.4</td>
<td>51.5</td>
<td>1441</td>
</tr>
<tr>
<td>40</td>
<td>2.4*</td>
<td>2.81</td>
<td>3.58</td>
<td>8.39</td>
<td>150</td>
<td>5.0</td>
<td>22.7</td>
<td>28.9</td>
<td>1009</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>3.03</td>
<td>3.86</td>
<td>8.94</td>
<td></td>
<td>6.3</td>
<td>28.3</td>
<td>36.0</td>
<td>1236</td>
</tr>
<tr>
<td></td>
<td>2.9</td>
<td>3.35</td>
<td>4.26</td>
<td>9.71</td>
<td></td>
<td>8.0</td>
<td>35.4</td>
<td>45.1</td>
<td>1510</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>3.66</td>
<td>4.66</td>
<td>10.4</td>
<td></td>
<td>10</td>
<td>43.6</td>
<td>55.5</td>
<td>1803</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>4.46</td>
<td>5.68</td>
<td>12.1</td>
<td></td>
<td>12.5</td>
<td>53.4</td>
<td>68.0</td>
<td>2125</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>6.97</td>
<td>8.88</td>
<td>29.6</td>
<td></td>
<td>16</td>
<td>66.4</td>
<td>84.5</td>
<td>2500</td>
</tr>
<tr>
<td>50</td>
<td>2.5*</td>
<td>3.71</td>
<td>4.72</td>
<td>17.7</td>
<td>180</td>
<td>6.3</td>
<td>34.2</td>
<td>43.6</td>
<td>2186</td>
</tr>
<tr>
<td></td>
<td>2.9*</td>
<td>4.26</td>
<td>5.42</td>
<td>19.9</td>
<td></td>
<td>8.0</td>
<td>43.0</td>
<td>54.7</td>
<td>2689</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>4.66</td>
<td>5.94</td>
<td>21.6</td>
<td></td>
<td>10</td>
<td>53.0</td>
<td>67.5</td>
<td>3237</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>6.97</td>
<td>8.88</td>
<td>29.6</td>
<td></td>
<td>16</td>
<td>81.4</td>
<td>104</td>
<td>4607</td>
</tr>
<tr>
<td>60</td>
<td>2.9*</td>
<td>5.17</td>
<td>6.58</td>
<td>35.6</td>
<td>200</td>
<td>6.3</td>
<td>38.2</td>
<td>48.6</td>
<td>3033</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>5.67</td>
<td>7.22</td>
<td>38.7</td>
<td></td>
<td>8.0</td>
<td>48.0</td>
<td>61.1</td>
<td>3744</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>6.97</td>
<td>8.88</td>
<td>46.1</td>
<td></td>
<td>10</td>
<td>59.3</td>
<td>75.5</td>
<td>4525</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>8.54</td>
<td>10.90</td>
<td>54.4</td>
<td></td>
<td>12.5</td>
<td>73.0</td>
<td>93.0</td>
<td>5419</td>
</tr>
<tr>
<td>70</td>
<td>2.9*</td>
<td>6.08</td>
<td>7.74</td>
<td>57.9</td>
<td>250</td>
<td>6.3</td>
<td>48.1</td>
<td>61.2</td>
<td>6049</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>7.46</td>
<td>9.50</td>
<td>69.5</td>
<td></td>
<td>8.0</td>
<td>60.5</td>
<td>77.1</td>
<td>7510</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>10.10</td>
<td>12.90</td>
<td>90.1</td>
<td></td>
<td>10</td>
<td>90.7</td>
<td>116</td>
<td>16150</td>
</tr>
<tr>
<td>80</td>
<td>2.9*</td>
<td>6.99</td>
<td>8.90</td>
<td>88.0</td>
<td>300</td>
<td>10</td>
<td>90.7</td>
<td>116</td>
<td>16150</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>8.59</td>
<td>10.90</td>
<td>106</td>
<td></td>
<td>12.5</td>
<td>92.6</td>
<td>118</td>
<td>11050</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>11.70</td>
<td>14.90</td>
<td>139</td>
<td></td>
<td>16</td>
<td>117</td>
<td>149</td>
<td>13480</td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>14.40</td>
<td>18.40</td>
<td>165</td>
<td></td>
<td>10</td>
<td>106</td>
<td>136</td>
<td>26059</td>
</tr>
<tr>
<td>90</td>
<td>3.6</td>
<td>9.72</td>
<td>12.4</td>
<td>154</td>
<td>350</td>
<td>12.5</td>
<td>112</td>
<td>143</td>
<td>19630</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>13.30</td>
<td>16.9</td>
<td>202</td>
<td></td>
<td>16</td>
<td>142</td>
<td>181</td>
<td>24160</td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>16.40</td>
<td>20.9</td>
<td>242</td>
<td></td>
<td>16</td>
<td>167</td>
<td>213</td>
<td>39370</td>
</tr>
<tr>
<td>100</td>
<td>4.0</td>
<td>12.00</td>
<td>15.3</td>
<td>234</td>
<td></td>
<td>10.0</td>
<td>106</td>
<td>136</td>
<td>26059</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>14.80</td>
<td>18.9</td>
<td>283</td>
<td></td>
<td>12.5</td>
<td>132</td>
<td>168</td>
<td>31810</td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>18.40</td>
<td>23.4</td>
<td>341</td>
<td></td>
<td>16.0</td>
<td>167</td>
<td>213</td>
<td>39370</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>22.90</td>
<td>29.1</td>
<td>408</td>
<td></td>
<td>10.0</td>
<td>122</td>
<td>156</td>
<td>39350</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>27.90</td>
<td>35.5</td>
<td>474</td>
<td></td>
<td>12.5</td>
<td>152</td>
<td>193</td>
<td>48190</td>
</tr>
</tbody>
</table>

Not to BS 4848: Part 2.
Rectangular hollow steel sections (BS 4848:Part 2)

<table>
<thead>
<tr>
<th>$D \times B$ (mm × mm)</th>
<th>t (mm)</th>
<th>M (kg m$^{-1}$)</th>
<th>A (cm2)</th>
<th>I_x (cm4)</th>
<th>I_y (cm4)</th>
<th>$D \times B$ (mm × mm)</th>
<th>t (mm)</th>
<th>M (kg m$^{-1}$)</th>
<th>A (cm2)</th>
<th>I_x (cm4)</th>
<th>I_y (cm4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 × 30</td>
<td>2.4*</td>
<td>2.91</td>
<td>3.58</td>
<td>11.6</td>
<td>5.14</td>
<td>200 × 100</td>
<td>5.0</td>
<td>22.7</td>
<td>28.9</td>
<td>1509</td>
<td>509</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>3.03</td>
<td>3.86</td>
<td>12.4</td>
<td>5.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.9*</td>
<td>3.35</td>
<td>4.26</td>
<td>13.3</td>
<td>5.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>3.66</td>
<td>4.66</td>
<td>14.5</td>
<td>6.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 × 40</td>
<td>2.5*</td>
<td>3.71</td>
<td>4.72</td>
<td>23.1</td>
<td>12.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.9*</td>
<td>4.26</td>
<td>5.42</td>
<td>26.2</td>
<td>13.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>4.66</td>
<td>5.94</td>
<td>28.8</td>
<td>14.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>5.72</td>
<td>7.28</td>
<td>33.6</td>
<td>17.3</td>
<td>250 × 150</td>
<td>6.3</td>
<td>38.2</td>
<td>48.6</td>
<td>4178</td>
<td>1886</td>
</tr>
<tr>
<td>80 × 40</td>
<td>2.9*</td>
<td>5.17</td>
<td>6.58</td>
<td>53.5</td>
<td>17.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>5.67</td>
<td>7.22</td>
<td>58.1</td>
<td>19.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>6.97</td>
<td>8.88</td>
<td>69.6</td>
<td>22.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 × 50</td>
<td>2.9*</td>
<td>6.08</td>
<td>7.74</td>
<td>82.9</td>
<td>32.8</td>
<td>300 × 200</td>
<td>6.3</td>
<td>48.1</td>
<td>61.2</td>
<td>7880</td>
<td>4216</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>7.46</td>
<td>9.50</td>
<td>99.8</td>
<td>39.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>10.1</td>
<td>12.9</td>
<td>130</td>
<td>50.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 × 50</td>
<td>2.9*</td>
<td>6.53</td>
<td>8.32</td>
<td>108</td>
<td>36.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>7.18</td>
<td>9.14</td>
<td>117</td>
<td>39.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>8.86</td>
<td>11.3</td>
<td>142</td>
<td>46.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>10.9</td>
<td>13.9</td>
<td>170</td>
<td>55.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3*</td>
<td>13.4</td>
<td>17.1</td>
<td>202</td>
<td>64.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 × 60</td>
<td>2.9*</td>
<td>6.99</td>
<td>8.90</td>
<td>121</td>
<td>54.6</td>
<td>450 × 250</td>
<td>10.0</td>
<td>106</td>
<td>136</td>
<td>37180</td>
<td>14900</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>8.59</td>
<td>10.9</td>
<td>147</td>
<td>65.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>11.7</td>
<td>14.9</td>
<td>192</td>
<td>84.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>14.4</td>
<td>18.4</td>
<td>230</td>
<td>99.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 × 60</td>
<td>3.6</td>
<td>9.72</td>
<td>12.4</td>
<td>230</td>
<td>76.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>13.3</td>
<td>16.9</td>
<td>304</td>
<td>99.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>16.4</td>
<td>20.9</td>
<td>366</td>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 × 80</td>
<td>5.0</td>
<td>14.8</td>
<td>18.9</td>
<td>370</td>
<td>195</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>18.4</td>
<td>23.4</td>
<td>447</td>
<td>234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>22.9</td>
<td>29.1</td>
<td>537</td>
<td>278</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>27.9</td>
<td>35.5</td>
<td>628</td>
<td>320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150 × 100</td>
<td>5.0</td>
<td>18.7</td>
<td>23.9</td>
<td>747</td>
<td>396</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>23.3</td>
<td>29.7</td>
<td>910</td>
<td>479</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>29.1</td>
<td>37.1</td>
<td>1106</td>
<td>577</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>35.7</td>
<td>45.5</td>
<td>1312</td>
<td>678</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 × 80</td>
<td>5.0</td>
<td>18.0</td>
<td>22.9</td>
<td>753</td>
<td>251</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>22.3</td>
<td>28.5</td>
<td>917</td>
<td>302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>27.9</td>
<td>35.5</td>
<td>1113</td>
<td>361</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>34.2</td>
<td>43.5</td>
<td>1318</td>
<td>419</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Not to BS 4848: Part 2.
8.3.2 *ISO* metric metal sheet, strip and wire sizes

Preference is given in the order: R 10, R20, R40.

Sizes (mm)

<table>
<thead>
<tr>
<th>R 10</th>
<th>R 20</th>
<th>R 40</th>
<th>R 10</th>
<th>R 20</th>
<th>R 40</th>
<th>R 10</th>
<th>R 20</th>
<th>R 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020</td>
<td>0.020</td>
<td>0.250</td>
<td>0.250</td>
<td>0.250</td>
<td>3.15</td>
<td>3.15</td>
<td>3.15</td>
<td></td>
</tr>
<tr>
<td>0.021</td>
<td>0.022</td>
<td>0.265</td>
<td>0.280</td>
<td>0.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>0.022</td>
<td>0.280</td>
<td>0.280</td>
<td>0.300</td>
<td>3.55</td>
<td>3.55</td>
<td>3.55</td>
<td></td>
</tr>
<tr>
<td>0.024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>0.025</td>
<td>0.315</td>
<td>0.315</td>
<td>0.315</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>0.026</td>
<td>0.026</td>
<td>0.335</td>
<td>0.335</td>
<td></td>
<td></td>
<td>4.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.028</td>
<td>0.028</td>
<td>0.355</td>
<td>0.355</td>
<td></td>
<td>4.50</td>
<td>4.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.032</td>
<td>0.032</td>
<td>0.400</td>
<td>0.400</td>
<td>0.400</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>0.034</td>
<td>0.034</td>
<td>0.425</td>
<td>0.450</td>
<td>0.475</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.036</td>
<td>0.036</td>
<td>0.450</td>
<td>0.450</td>
<td></td>
<td></td>
<td>5.60</td>
<td>5.60</td>
<td></td>
</tr>
<tr>
<td>0.038</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>0.040</td>
<td>0.040</td>
<td>0.500</td>
<td>0.500</td>
<td>0.500</td>
<td>6.30</td>
<td>6.30</td>
<td>6.30</td>
<td></td>
</tr>
<tr>
<td>0.042</td>
<td></td>
<td>0.530</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.70</td>
<td></td>
</tr>
<tr>
<td>0.045</td>
<td>0.045</td>
<td>0.560</td>
<td>0.560</td>
<td></td>
<td>7.10</td>
<td>7.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.048</td>
<td></td>
<td>0.600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.50</td>
<td></td>
</tr>
<tr>
<td>0.050</td>
<td>0.050</td>
<td>0.630</td>
<td>0.630</td>
<td>0.630</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>0.053</td>
<td></td>
<td>0.670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.50</td>
<td></td>
</tr>
<tr>
<td>0.056</td>
<td>0.056</td>
<td>0.710</td>
<td>0.710</td>
<td></td>
<td>9.00</td>
<td>9.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.060</td>
<td></td>
<td>0.750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.50</td>
<td></td>
</tr>
<tr>
<td>0.063</td>
<td>0.063</td>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>0.067</td>
<td>0.071</td>
<td>0.850</td>
<td>0.900</td>
<td>0.900</td>
<td></td>
<td>11.2</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>0.071</td>
<td>0.075</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>0.080</td>
<td>0.080</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>0.085</td>
<td>0.090</td>
<td>1.06</td>
<td>1.12</td>
<td>1.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.090</td>
<td>0.095</td>
<td></td>
<td></td>
<td></td>
<td>14.0</td>
<td>14.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.106</td>
<td>0.112</td>
<td>1.32</td>
<td>1.32</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.112</td>
<td>0.118</td>
<td></td>
<td></td>
<td></td>
<td>18.0</td>
<td>18.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.125</td>
<td>0.125</td>
<td>1.60</td>
<td>1.60</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.132</td>
<td>0.140</td>
<td>1.80</td>
<td>1.80</td>
<td></td>
<td>22.4</td>
<td>22.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.140</td>
<td>0.150</td>
<td>1.90</td>
<td></td>
<td></td>
<td>23.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.160</td>
<td>0.160</td>
<td>2.00</td>
<td>2.00</td>
<td></td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>0.160</td>
<td>0.170</td>
<td>2.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.180</td>
<td>0.190</td>
<td>2.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.200</td>
<td>0.200</td>
<td>2.50</td>
<td>2.50</td>
<td></td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>0.212</td>
<td></td>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.224</td>
<td></td>
<td>2.80</td>
<td></td>
<td></td>
<td>2.80</td>
<td>2.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.236</td>
<td></td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.3.3 Copper pipe sizes for domestic water pipes, etc.

Size are given in BS 2871: Part 1.

<table>
<thead>
<tr>
<th>Size of pipe* (mm)</th>
<th>Table X: Half-hard, light gauge</th>
<th>Table Y: half-hard, annealed</th>
<th>Table Z: hard drawn, thin wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.6</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>8</td>
<td>0.6</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>0.6</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>12</td>
<td>0.6</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>15</td>
<td>0.7</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>18</td>
<td>0.8</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>22</td>
<td>0.9</td>
<td>1.2</td>
<td>0.6</td>
</tr>
<tr>
<td>28</td>
<td>0.9</td>
<td>1.2</td>
<td>0.6</td>
</tr>
<tr>
<td>35</td>
<td>1.2</td>
<td>1.5</td>
<td>0.6</td>
</tr>
<tr>
<td>42</td>
<td>1.2</td>
<td>1.5</td>
<td>0.6</td>
</tr>
<tr>
<td>54</td>
<td>1.2</td>
<td>2.0</td>
<td>0.6</td>
</tr>
<tr>
<td>76.1</td>
<td>1.5</td>
<td>2.0</td>
<td>0.6</td>
</tr>
<tr>
<td>108</td>
<td>1.5</td>
<td>2.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

*Outer diameter.

8.4 Miscellaneous data

8.4.1 Factors of safety

Factor of safety \(FS = \frac{\text{Tensile strength or Proof stress}}{\text{Permissible working stress}} \) (sometimes based on yield stress)

Typical factors of safety for various materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Steady</th>
<th>Varying, of same kind</th>
<th>Alternating</th>
<th>Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grey cast iron</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Malleable cast iron</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Carbon steel</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Brittle alloys</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Soft alloys</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Timber</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Brick</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Stone</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
</tbody>
</table>
Components

<table>
<thead>
<tr>
<th>Component</th>
<th>FS</th>
<th>Component</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers</td>
<td>4.5-6</td>
<td>Gears: static load</td>
<td>1.25</td>
</tr>
<tr>
<td>Shafts for flywheels, armatures, etc.</td>
<td>7-9</td>
<td>fatigue load</td>
<td>2.0</td>
</tr>
<tr>
<td>Lathe spindles</td>
<td>12</td>
<td>Wire rope: general hoists</td>
<td>5-7</td>
</tr>
<tr>
<td>Shifting</td>
<td>24</td>
<td>guys</td>
<td>3.5</td>
</tr>
<tr>
<td>Steelwork: buildings</td>
<td>4</td>
<td>mine shafts</td>
<td>5-8</td>
</tr>
<tr>
<td>bridges</td>
<td>5</td>
<td>lifts</td>
<td>7 12</td>
</tr>
<tr>
<td>small-scale</td>
<td>6</td>
<td>Springs: small, light duty</td>
<td>2</td>
</tr>
<tr>
<td>Cast-iron wheels</td>
<td>20</td>
<td>small, heavy duty</td>
<td>3</td>
</tr>
<tr>
<td>Welds not subject to fatigue</td>
<td>3-6</td>
<td>large, light duty</td>
<td>3</td>
</tr>
<tr>
<td>Turbine blades and rotors</td>
<td>3-5</td>
<td>large, heavy duty</td>
<td>4.5</td>
</tr>
<tr>
<td>Bolts</td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.4.2 Velocity of sound in various media

<table>
<thead>
<tr>
<th>Solid</th>
<th>Velocity (m s(^{-1}))</th>
<th>Liquid</th>
<th>Velocity (m s(^{-1}))</th>
<th>Gas</th>
<th>Velocity (m s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>5280</td>
<td>Water: fresh</td>
<td>1430</td>
<td>Air</td>
<td>331</td>
</tr>
<tr>
<td>Copper</td>
<td>3580</td>
<td>sea</td>
<td>1510</td>
<td>Oxygen</td>
<td>315</td>
</tr>
<tr>
<td>Iron</td>
<td>3850</td>
<td>Alcohol</td>
<td>1440</td>
<td>Hydrogen</td>
<td>1263</td>
</tr>
<tr>
<td>Steel</td>
<td>5050</td>
<td>Mercury</td>
<td>1460</td>
<td>Carbon monoxide</td>
<td>336</td>
</tr>
<tr>
<td>Lead</td>
<td>1200</td>
<td></td>
<td></td>
<td>Carbon dioxide</td>
<td>258</td>
</tr>
<tr>
<td>Glass</td>
<td>45-5600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubber</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td>4-5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.4.3 Loudness of sounds

<table>
<thead>
<tr>
<th>Source</th>
<th>Intensity (db)</th>
<th>Source</th>
<th>Intensity (db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold of hearing</td>
<td>0</td>
<td>Loud conversation</td>
<td>70</td>
</tr>
<tr>
<td>Virtual silence</td>
<td>10</td>
<td>Door slamming</td>
<td>80</td>
</tr>
<tr>
<td>Quiet room</td>
<td>20</td>
<td>Riveting gun</td>
<td>90</td>
</tr>
<tr>
<td>Average home</td>
<td>30</td>
<td>Loud motor</td>
<td>100</td>
</tr>
<tr>
<td>Motor car</td>
<td>40</td>
<td>horn</td>
<td></td>
</tr>
<tr>
<td>Ordinary conversation</td>
<td>50</td>
<td>Thunder</td>
<td>110</td>
</tr>
<tr>
<td>Street traffic</td>
<td>60</td>
<td>Aero engine</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold of pain</td>
<td>130</td>
</tr>
</tbody>
</table>
8.4.4 Greek alphabet

<table>
<thead>
<tr>
<th>Upper case</th>
<th>Lower case</th>
<th>Name</th>
<th>Upper case</th>
<th>Lower case</th>
<th>Name</th>
<th>Upper case</th>
<th>Lower case</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>α</td>
<td>alpha</td>
<td>I</td>
<td>I</td>
<td>iota</td>
<td>P</td>
<td>ρ</td>
<td>rho</td>
</tr>
<tr>
<td>B</td>
<td>β</td>
<td>beta</td>
<td>K</td>
<td>κ</td>
<td>kappa</td>
<td>Σ</td>
<td>σ</td>
<td>sigma</td>
</tr>
<tr>
<td>Γ</td>
<td>γ</td>
<td>gamma</td>
<td>Λ</td>
<td>λ</td>
<td>lambda</td>
<td>Τ</td>
<td>τ</td>
<td>tau</td>
</tr>
<tr>
<td>Δ</td>
<td>δ</td>
<td>delta</td>
<td>Μ</td>
<td>μ</td>
<td>mu</td>
<td>Y</td>
<td>u</td>
<td>upsilon</td>
</tr>
<tr>
<td>E</td>
<td>ε</td>
<td>epsilon</td>
<td>Ν</td>
<td>ν</td>
<td>nu</td>
<td>Φ</td>
<td>φ</td>
<td>phi</td>
</tr>
<tr>
<td>Z</td>
<td>ζ</td>
<td>zeta</td>
<td>Ξ</td>
<td>ξ</td>
<td>xi</td>
<td>Χ</td>
<td>χ</td>
<td>chi</td>
</tr>
<tr>
<td>H</td>
<td>η</td>
<td>eta</td>
<td>Ω</td>
<td>ο</td>
<td>omicron</td>
<td>Ψ</td>
<td>ψ</td>
<td>psi</td>
</tr>
<tr>
<td>Θ</td>
<td>θ</td>
<td>theta</td>
<td>Π</td>
<td>π</td>
<td>pi</td>
<td>Ω</td>
<td>ω</td>
<td>omega</td>
</tr>
</tbody>
</table>
Glossary of terms

abrasion The process of rubbing, grinding or wearing away by friction using an abrasive such as emery, corundum, diamond, etc.

absolute pressure Pressure measured from absolute zero pressure as opposed to 'gauge pressure'.

absolute temperature Temperature measured with respect to 'absolute zero temperature', units are 'kelvin' (symbol K). K = °C + 273.15.

acceleration The rate of change of velocity with respect to time, \((d^2x/dt^2) \) or \(\ddot{x} \) metres per second per second (m s\(^{-2}\)).

a.c. machines Machines producing or using alternating current, e.g. alternator and a.c. generator. a.c. motors

addendum The radial distance between the pitch circle and the major diameter of a gear.

adhesive Substances used for joining materials, usually without the necessity for heat, based on natural substances (animal bone, casein, rubber, etc.) or synthetic resins.

adiabatic process A thermodynamic process in which there is no transfer of heat between the working substance and the surroundings.

aerofoil A body shaped so as to produce an appreciable 'lift', i.e. a force normal to the direction of fluid flow relative to the body, and a small 'drag' force in the same direction as the flow. Aerofoil sections are used for turbine blades, wing sections, etc.

air–fuel ratio The ratio of the mass of air to mass of fuel entering an internal combustion engine, gas turbine or boiler furnace.

air motor A motor which converts the energy of compressed air into mechanical energy, usually as a rotation. The main types are axial or radial piston, and vane.

alloy A substance with metallic properties composed of two or more chemical elements, at least one of which is a metal.

alloy steel Steel containing significant quantities of alloying elements other than carbon and commonly accepted amounts of manganese, sulphur, silicon and phosphorus, added to change the mechanical and physical properties.

alternating current Abbreviation a.c. Electric current whose flow changes direction cyclicly. The normal waveform is sinusoidal.

alternator A type of a.c. generator driven at constant speed to generate the desired frequency.

anemometer A mechanical or electrical instrument for measuring the velocity of a fluid stream, particularly wind velocity. The main types are, cup, vane and hot wire.

aneroid barometer A barometer with a partially evacuated bellows chamber connected to a pointer with a pen recording atmospheric pressure on a drum chart. The bellows responds to atmospheric pressure.

angle gauges Sets of metal blocks with two opposite faces at various angles to one another, used separately or jointly to measure angles to a high degree of accuracy.

angular acceleration The rate of change of angular velocity expressed in radians per second squared: \(d^2\theta/dt^2 \) or \(\ddot{\theta} \) (rad s\(^{-2}\)).

angular momentum The product of the moment of inertia, \(I \) and the angular velocity \(\omega \) of a body moving in a curve, e.g. a flywheel.

angular velocity The rate of change of angular displacement with respect to time, expressed in radians per second, \(d\theta/dt \) or \(\dot{\theta} \) (rad s\(^{-1}\)).

annealing Heating a metal to, and holding at, a suitable temperature and cooling at a suitable rate so as to reduce hardness, improve machineability, ease cold working, etc.

Archimedes principle States that a body wholly or partially submerged suffers an apparent loss of weight equal to the weight of fluid displaced.

arc welding A process for joining metals by fusion in which heat is produced by an electric arc.

arithmetic mean The sum of \(n \) numbers divided by \(n \).

arithmetic progression A series of numbers where each number is obtained by adding a fixed quantity to the previous number.
atomic weight Relative atomic mass where one unit is 1.660×10^{-27} kg.
axial flow machines Pumps, fans, compressors, turbines, etc., in which the fluid flows generally parallel to the axis of rotation.

balancing Measuring the static or dynamic out-of-balance forces in a rotating part and adding or subtracting mass to cancel them out.
barometer Instrument for measuring atmospheric pressure, the main types being the aneroid and Fortin barometers.
beams Bars, rods, etc., of metal or other material carrying transverse loads with various types of support, e.g. simple supports, built-in ends, continuous supports.
bearing A fixed support for a rotating shaft or sliding part with minimum friction.
belt drive The transmission of power from one shaft to another by means of an endless belt which may be flat or of vee section, etc.
bending moment The algebraic sum of the moments of all the forces to either side of a transverse section of a beam, etc.
bending modulus A property of a section equal to the bending moment divided by the maximum bending stress.
bend loss The loss of pressure in a fluid flowing around a bend in a pipe or duct.

Bemoulli equation States that in a pipe or duct in which a fluid flows, the sum of the pressure, potential and kinetic energies is equal at any point.
bevel gear A toothed wheel with teeth formed on a conical surface used for transmitting rotation from a shaft to one at an angle to it in the same plane, usually at right angles.

binary numbers A scale of numbers with 'radix' equal to 2 as opposed to the usual scale radix of 10 (decimal numbers). Only two symbols are used: 0 and 1.
binomial coefficients Coefficients of terms of the expansion of $(1 + x)^n$ using the binomial theorem.
binomial distribution A distribution used in statistics based on the binomial theorem which gives the probability of an event taking place.
black body In the study of radiation of heat, a body which completely absorbs heat or light falling on it.
black-body radiation The quantity or quality of radiation from a black body, e.g. from the inside of a cavity.

blade A curved plate often of aerofoil section used to deflect a fluid flow, e.g. airscrew or propeller blade, turbine blade, impeller vane.
blank A piece of sheet metal cut to a suitable shape to be subject to further pressing processes. A pressed sintered component requiring further machining, etc.
blower A rotating, usually air, compressor for supplying relatively large flows at a low pressure.
boiling point The temperature at which a liquid boils at standard atmospheric pressure of 101.325 kN m$^{-2}$.
bolt A cylindrical partly screwed bar with a (usually) hexagonal head used in conjunction with a 'nut' to fasten two or more parts together.
bore Hole or cavity produced by a single- or multi-point tool, usually cylindrical.
boundary layer A thin layer of fluid adjacent to a surface over which the fluid flows, which exerts a viscous drag on the surface due to the large velocity gradient.
boundary lubrication A state of partial lubrication in a plain bearing where there is no oil film, only an adsorbed monomolecular layer of lubricant in the surfaces.
Bourdon tube pressure gauge A gauge in which fluid pressure tends to straighten a curved, flattened tube connected to a pointer mechanism; pressure is read from a circular scale. A differential form is available having two tubes connected to a single pointer.
Boyle's law States that, for a 'perfect gas' the volume of a given mass varies inversely as the pressure at constant temperature.
brake A device for applying resistance to the motion of a body, either to retard it or to absorb power (dynamometer).
brazing The joining of metals by a thin capillary layer of non-ferrous metal filler in the space between them. Carried out above about 800 °C.
brittle fracture Fracture of a material with little or no plastic deformation.
brroaching The cutting of holes of various shapes or cutting of an outside surface, with a 'broach' consisting of a tapered bar with cutting edges. The broach moves in a reciprocating axial manner.
buckling Sudden large-scale deformation of a strut, thin cylinder, etc., due to instability when loaded, e.g. an axial load on a strut.
bulk modulus The ratio of pressure (three-dimensional stress) to volumetric strain of a material.
buoyancy The apparent loss of weight experienced by a submerged or floating body due to the upthrust caused by fluid pressure.
butt welding The welding together of abutting members lying in the same plane.

cam A sliding mechanical device used to convert rotary to linear (usually) motion, and vice versa.
capacitance The ‘charge’ on a conducting body divided by its ‘potential’. Unit the ‘farad’.
capacitor An electrical component having capacitance usually consisting of two conducting surfaces of large area separated by a very thin (usually) dielectric.
carbide tools High-speed machine tools of tungsten, titanium or tantalum carbide, or combinations of these in a matrix of cobalt or nickel.
carbon steel Steel containing carbon up to about 2% and only residual quantities of other elements, except for small amounts of silicon and manganese.
carburizing Introducing carbon into solid ferrous alloys by heating in the presence of a carbonaceous material.
Carnot cycle An ideal heat engine cycle having the maximum thermal efficiency, called the ‘Carnot efficiency’.
case hardening The production of a hard surface on steel by heating in a carbonaceous medium to increase the carbon content, and then quenching.
casting An object at or near-finished shape obtained by the solidification of a molten substance in a ‘mould’. The name of the process.
cast iron Iron containing carbon suitable for casting, e.g. grey, white, malleable, nodular.
cavitation The formation and sudden collapse of bubbles in a liquid due to local reduction in pressure. Cavitation erosion may be caused on local metal surfaces.
centre drilling Drilling of a conical hole in the end of a workpiece to support it while being rotated. A ‘centre drill’ is used.
centreless grinding The grinding of cylindrical or conical surfaces on workpieces running in rollers instead of centres.
centre of buoyancy The ‘centroid’ of the immersed portion of a floating body.
centre of gravity (centre of mass) The imaginary point in a body at which the mass may be assumed to be concentrated.
centre of percussion The point on a compound pendulum whose distance from the centre of oscillation is the same as the length of a simple pendulum with the same periodic time.
centre of pressure The point on a submerged surface at which the resultant pressure may be taken to act.
centrifugal casting A casting made by pouring molten material into a rotating mould. This improves the quality of the casting.
centrifugal compressor A machine similar to the centrifugal pump used for increasing the pressure of gases such as air. It may have several stages.
centrifugal force A body constrained to move in a curved path reacts with a force (centrifugal force) directed away from the centre of curvature. It is equal and opposite to the force deviating the body from a straight line called the ‘centripetal force’. Both are equal to the mass multiplied by the ‘centripetal acceleration’.
centrifugal pump A pump, usually for liquids, which has a rotating ‘impeller’ which increases the pressure and kinetic energy of the fluid.
centripetal force See ‘centrifugal force’.
centroid The centre of gravity of a lamina. Centre of area.
ceramics Non-organic, non-metallic materials of brittle nature, e.g. alumina, carbides.
cermet A body of ceramic particles bonded with a metal.
chain drive A device consisting of an endless chain (usually a ‘roller chain’) connecting two wheels (sprockets) on parallel shafts.
chamfer A corner bevelled to eliminate a sharp edge.
charge A quantity of unbalanced electricity in a body, i.e. an excess or deficiency of electrons.
Charles’ law States that for a ‘perfect gas’ at constant pressure the volume increases by 1/273 of its volume at 0°C for each degree celsius rise in temperature.
chip A piece of metal removed by a cutting tool or abrasive.
chip breaker A groove in a cutting tool used to break continuous chips for safety and handling reasons.
chuck A device for holding work or tools during machining operations.
clearance The gap or space between two mating components.
closed cycle gas turbine A gas turbine unit in which the working fluid continuously circulates without replenishment.
clutch A device used to connect or disconnect two rotating shafts, etc., either while rotating or at rest.
cold working Plastic deformation of metal below the recrystallization temperature.
column A vertical member with a compressive load; a strut.
combined stress A state of stress combining tensile (or compressive), shear, and bending stresses.

combustion equations Chemical equations used in the study of combustion of fuels for engines, boilers, etc.

combustion products Chemical products resulting from the combustion of fuels in air.

complex number A number of the form \((a + ib)\) having a 'real' part \(a\) and an imaginary part \(ib\) where \(i = \sqrt{-1}\). The symbol \(j\) is also used.

composite A material consisting of a mixture of two or more materials, e.g. glass or carbon fibres in a plastic matrix.

compressibility The reciprocal of 'bulk modulus'.

compression ignition engine An engine in which ignition takes place as the result of temperature rise in the air/fuel mixture due to compression.

compression ratio In an internal combustion engine, the ratio of the total volume in a cylinder at outer dead centre to the clearance volume. In powder metallurgy, the ratio of the volume of loose powder to the volume of the 'compact' made from it.

compressive strength The maximum compressive stress a material will withstand, based on the original cross-sectional area.

compressive stress Compressive force divided by area of cross-section.

compressor A rotary or reciprocating machine which compresses air or other gases.

condenser A heat exchanger in which a vapour, e.g. steam, is condensed, usually by water flowing in tubes over which the vapour passes.

conductance The property of a substance which makes it conduct electricity. The unit is the 'siemens' (symbol \(G\)). The reciprocal of resistance.

conduction of heat Heat transferred from one part of a medium to another without motion, the heat being passed from one molecule to another.

conductivity (electrical) Conduction (reciprocal of resistance) between opposite faces of a 1 m cube at a specified temperature. The unit is the 'ohm metre' (symbol \(\Omega\)-m).

conductivity (thermal) A measure of the rate at which heat flows through a wall by conduction. The unit is watt per metre per kelvin (\(W\) m\(^{-1}\) K\(^{-1}\)).

conservation of angular momentum In a closed system the sum of the angular momenta \(\Sigma I\omega\) is a constant, where \(I\) = moment of inertia, \(\omega\) = angular velocity.

conservation of energy The energy in a closed system cannot be changed but only interchanged, e.g. potential to kinetic energy.
creep Slow plastic deformation of metals under stress, particularly at high temperatures.
creep resistance Resistance of metals to creep.
critical speed A rotational speed corresponding to a natural frequency of transverse vibrations of the member. Also called 'whirling speed'.
crossflow heat exchanger A heat exchanger in which the two fluids flow at right angles to one another.
cutting fluid A fluid used in metal cutting to improve finish, tool life, and accuracy. It acts as a chip remover and a coolant.
cutting speed The linear or peripheral speed of relative motion between a cutting tool and workpiece in the principal direction of cutting.
cyaniding The introduction of carbon and nitrogen into a solid ferrous alloy by holding it at a suitable high temperature in contact with molten cyanide.
cycloidal gears Gears with teeth whose flank profile consists of a cycloidal curve.
cylindrical grinding Grinding the outer cylindrical surfaces of a rotating part.
damped vibration Vibrations reduced in amplitude due to energy dissipation.
damping The reduction in amplitude of vibrations due to mechanical friction in a mechanical system or by electrical resistance in an electrical one.
deceleration Negative acceleration. The rate of diminution of velocity with time. The unit is metres per second per second (m s\(^{-2}\)).
dedendum The radial distance between pitch circle and the bottom of a gear tooth.
deflection The amount of bending, compression, tension, or twisting of a part subject to load.
density The mass of a unit volume of a substance. The unit is kilograms per metre cubed (kg m\(^{-3}\)).
depth of cut The thickness of material removed from a workpiece in a machine tool during one pass.
dial gauge A sensitive mechanical instrument in which a small displacement, e.g. 0.01 mm, is indicated on a dial.
diametral clearance The difference in diameter between a shaft and the hole into which it fits or runs, e.g. in plain journal bearings.
diamond dust The hardest substance used for abrasive wheels.
diamond pyramid hardness An indentation hardness test for materials using a 136° diamond pyramidal indenter and various loads.
diamond tool A diamond shaped to the contour of a single-point cutting tool for precision machining of non-ferrous metals and plastics.
diamond wheel A grinding wheel with crushed diamonds embedded in resin or metal.
die A tool used to impart shape in many processes, e.g. blanking, cutting, drawing, forging, punching, etc.
die casting A casting made in a die. A process where molten metal is forced by high pressure into a metal mould.
differential pressure gauge A gauge which measures the difference between two pressures, e.g. across an orifice in fluid flow.
diode Thermionic or semiconductor device with unidirectional properties used as a rectifier.
direct current (d.c.) An electric current which flows in one direction only.
direct current machines Generators or motors operating on d.c.
discharge coefficient The rate of actual to theoretical flow of a fluid through an orifice, nozzle, Venturi meter, etc.
disk stresses Radial and hoop stresses in a rotating disk.
dowel A pin located in mating holes in two or more parts used to locate them relative to one another.
draft tube Discharge pipe at a water turbine outlet which reduces the water velocity and improves efficiency.
drag The resistance to motion of a body moving through a fluid.
drag coefficient A non-dimensional quantity relating drag to projected area, velocity and fluid density.
drawing Forming recessed parts by the plastic flow of metal in dies. Reducing the diameter or wire by pulling through dies of decreasing diameter.
drill A rotating end cutting tool with one or more cutting lips used for the production of holes.
drop forging A forging made using a 'drop hammer'.
dry flue gas Gaseous products of combustion excluding water vapour.
dryness fraction The proportion by mass of dry steam in a mixture of steam and water, i.e. in 'wet steam'.
ductility The ability of a material to deform plastically without fracture.
Dunkerley's method A method for determining the natural frequency of transverse vibrations of a shaft or its whirling speed when carrying several masses.
dynamic balancing The technique of eliminating the centrifugal forces in a rotor in order to eliminate vibration.
Dynamic pressure Pressure in a moving fluid resulting from its instantaneous arrest equal to \(pV^2/2 \), where \(p \) = fluid density, \(V \) = velocity.

Dynamics A study of the way in which forces produce motion.

Dynamic viscosity (coefficient of viscosity, absolute viscosity) In a fluid the ratio of shear stress to velocity gradient. Units are newton seconds per square metre (N·s·m\(^{-2}\)).

Dynamo An electromagnetic machine which converts mechanical to electrical energy.

Dynamometer A device for measuring the power output from a prime mover or electric motor.

Effectiveness of a heat exchanger The ratio of the 'heat received by the cold fluid' to the 'maximum possible heat available in the hot fluid'.

Efficiency A non-dimensional measure of the perfection of a piece of equipment, e.g. for an engine, the ratio of power produced to the energy rate of the fuel consumed, expressed as a fraction or as a percentage.

Elastic constants The moduli of elasticity for direct stress, shear stress and hydrostatic stress and also Poisson's ratio.

Elastic deformation Change of dimensions in a material due to stress in the elastic range.

Elasticity The property of a material by virtue of which it recovers its original size and shape after deformation.

Elastic limit The greatest stress that can be applied to a material without permanent deformation.

Electrical resistance The real part of impedance which involves dissipation of energy. The ratio of voltage drop to current in a conductor.

Electrical discharge machining (EDM) Machining process in which metal is removed by erosion due to an electric spark in a dielectric fluid using a shaped electrode.

Electric potential Potential measured by the energy of a unit positive charge at a point expressed relative to zero potential.

Electric strength The maximum voltage that can be applied to a piece of insulation before breakdown occurs.

Electrochemical corrosion Corrosion due to the flow of current between anodic and cathodic areas on metal surfaces.

Electrochemical machining (ECM) The removal of metal by electrolytic action, masks being used to obtain the required shape. The process is the reverse of electroplating.

Elongation In tensile testing the increase in length of a specimen at fracture as a percentage of the original length.

Emittance Ratio of the emissive power of a surface to that of a 'black body' at the same temperature and with the same surroundings.

End milling Machining with a rotating peripheral and end cutting tool (see face milling).

Endurance limit Same as 'fatigue limit'.

Energy The capacity of a body for doing work. Types are: kinetic, potential, pressure, chemical, electric, etc.

Energy fluctuation coefficient The ratio of the variation in kinetic energy in a flywheel due to speed fluctuation, to the average energy stored.

Enthalpy Thermodynamic property of a working substance equal to the sum of its 'internal energy' and the 'flow work' (pressure multiplied by volume). Used in the study of 'flow processes'.

Enthalpy-entropy diagram (h-s or Mollier chart) A diagram used for substances on which heat and work are represented by the length of a line. Used extensively for calculations on steam cycles and refrigeration.

Entropy In thermodynamics, entropy is concerned with the probability of a given distribution of momentum among molecules. In a free system entropy will tend to increase and the available energy decrease. If, in a substance undergoing a reversible change, a quantity of heat dQ at temperature T is taken in, then its entropy \(S \) is increased by an amount dQ/T. Thus the area under a curve on a T-S graph represents the heat transferred. Units: joules per kelvin (J·K\(^{-1}\)).

Epicyclic gear A system of gears in which one or more wheels travel round the outside or inside of another wheel the axis of which is fixed.

Equilibrium The state of a body at rest or in uniform motion. A body on which the resultant force is zero.

Erosion The destruction of metals, etc., by abrasive action of fluids usually accelerated by the presence of solids.

Euler strut formula A theoretical formula for determining the collapsing load for a strut.

Excess air The proportion of air used in excess of the theoretical quantity for complete combustion of a fuel.

Expansion The increase in volume of a working fluid, e.g. in a cylinder with moving piston. The opposite is 'compression'. In mathematics the expression of a function as an infinite series of terms.

Expansion coefficient (coefficient of expansion) The
GLOSSARY OF TERMS

expansion per unit length, area, or volume, per unit increase in temperature.

explosive forming Shaping metal parts confined in dies using the pressure from an explosive charge.

extensometer A sensitive instrument for measuring the change in the length of a stressed body.

extrusion The conversion of a 'billet' of metal into lengths of uniform cross-section by forcing it through a die, usually when heated.

face mill A rotating milling cutter with cutting edges on the face to mill a surface perpendicular to the cutting axis.

facing Generating a flat surface on a rotating work-piece by traversing a tool perpendicular to the axis of rotation.

factor of safety The ratio between ultimate (or yield) stress for a material and the permissible stress. (Abbreviation FS or FOS).

failure The breakdown of a member due to excessive load. Several 'theories of failure' are used.

fan A device for delivering or exhausting large quantities of air or other gas at low pressure. It consists basically of a rotating axial or centrifugal impeller running in a casing.

fatigue Phenomenon leading to the failure of a part under repeated or fluctuating stress below the tensile strength of the material.

fatigue life The number of cycles of fluctuating stress required to produce failure in a fatigue test.

fatigue limit (endurance limit) The maximum stress below which a material can endure an infinite number of stress fluctuation cycles. This only applies to a specially made specimen with a high degree of surface finish.

feed The rate of advance of a cutting tool along the surface of the workpiece.

fibres In 'composites', fine threads of a long length of glass, carbon, metal, etc., used to reinforce a material (e.g. plastics, metals), known as the 'matrix'.

filler metal Metal added in soldering, brazing and welding processes, usually in the form of a rod or stick.

fillet weld A weld of approximately triangular section joining two surfaces usually at right angles to one another in a lap, T or corner joint.

film lubrication Lubrication where the shaft is separated from the bearing by a thin film of lubricant which is under pressure and supports the load.

fin One of usually a number of thin projections integral with a body (e.g. engine cylinder block, gearbox, cooler) which increase the cooling area.

finish The surface condition, quality and appearance of a metal, etc., surface.

finish machining The final machining of a component where the objectives are surface finish and accuracy of dimension.

fit The clearance or interference between mating parts. Also the term for a range of clearance suggested by standards such as British Standards.

fitting loss The pressure or head loss incurred by fittings in a pipe or duct such as valves, bends, branch, etc.

flame cutting The cutting of metal plate to a desired shape by melting with an oxygen–gas flame.

flame hardening Quench hardening where the heat is supplied by a flame.

flange A projecting annular rim around the end of a cylinder or shaft used for strengthening, fastening or locating.

flat plate theory A study of the stresses and deflection of loaded flat plates. It is assumed that the plate is relatively thin and the deflections small.

flexible coupling A coupling usually joining rotating shafts to accommodate lateral or angular misalignment.

flowmeter An instrument for measuring the volumetric or mass flow of a fluid.

flow rate The rate of flow of a fluid. Units: cubic metres per second (m³ s⁻¹) or kilograms per second (kg s⁻¹).

flux Material used in soldering, brazing and welding to prevent the formation of, dissolve, or facilitate the removal of, oxides, etc.

flywheel A heavy wheel on a shaft used either to reduce speed fluctuation due to uneven torque, or to store energy for punching, shearing, forming, etc.

force That quantity which produces acceleration in a body measured by the rate of change of momentum. Unit: newton (N).

forging Plastic deformation of metal, usually hot, into the desired shape using a compressive force with or without dies.

form cutter A cutter profile sharpened to produce a specified form of work.

four-stroke cycle An engine cycle of 4 strokes (2 revolutions) consisting of induction, compression, expansion (power) and exhaust strokes; e.g. in the Otto and Diesel cycles.

Francis turbine A reaction water turbine in which
water flows radially inwards through guide vanes and a runner which it leaves axially.

frequency The rate of repetition of a periodic disturbance. Units: hertz (Hz) or cycles per second. Also called 'periodicity'.

fretting corrosion Surface damage between surfaces in contact under pressure due to slight relative motion, especially in a corrosive environment.

friction The resistance to motion which takes place when attempting to move one surface over another with contact pressure.

friction coefficient The ratio of the friction force to the normal force at the point of slipping. The 'static coefficient of friction' is the value just before slipping takes place, the 'dynamic coefficient of friction' being the value just after.

friction factor in pipes A dimensionless quantity from which the pressure loss due to pipe-wall friction can be calculated. It is usually plotted against the Reynold's number for various degrees of relative pipe roughness.

friction laws These state that the coefficient of friction is independent of surface area of contact and pressure between surfaces. These laws are not strictly true.

Froude number A dimensionless number used in the study of the motion of ships through water. It is the ratio of velocity to the square root of the product of length and acceleration due to gravity, \(\frac{V}{\sqrt{Lg}} \).

gas constant For a 'perfect gas', gas constant \(R = \frac{pV}{mT} \), where \(p = \) pressure, \(V = \) volume, \(m = \) mass, \(T = \) temperature.

gasket A layer of usually soft material between two mating surfaces which prevents leakage of fluids.

gas processes Changes in the properties of a substance, e.g. isothermal, isentropic, constant volume, etc.

gas refrigeration cycle A cycle using a reversed constant pressure cycle in which the working substance is always a gas.

gas shielded arc welding Arc welding with a shield of inert gas, e.g. argon, helium, to prevent oxidation.

gas turbine set A prime mover consisting of one or more axial or centrifugal compressors, combustion chamber(s) (or gas heater), and one or more axial or radial flow turbines. The compressor(s) are driven by one turbine and a turbine delivers useful power. Additional components are intercoolers between compressors, reheat between turbines and a heat exchanger.

gas welding Welding using the heat of an oxygen–gas flame.

gauge blocks (slip gauges) Accurate rectangular hard steel blocks used singly or in combination with others, the distance between them forming a gauging length.

gear ratio The speed ratio for a pair or train of gears determined by the number of teeth on each gear.

gear wheel A toothed rotating wheel used in conjunction with another wheel of the same or different diameter, to transmit motion to another shaft. The main types are spur, bevel, worm and epicyclic.

geometric factor A factor dependent on the shapes of bodies between which heat or light is radiated. This factor affects the heat-transfer coefficient.

geometric progression A series of numbers in which each number is derived by multiplying the previous number by a constant multiplier called the 'ratio'.

gravitation The attractive force between two masses. The force is proportional to the product of the masses and inversely proportional to the square of the distance between their centres of mass.

gravitational constant The gravitational force between two masses \(m_1 \) and \(m_2 \), their centres of mass a distance \(d \) apart, is given by \(F = Gm_1m_2/d^2 \) where \(G = \) gravitation constant = \(6.67 \times 10^{-11} \text{ N m}^2\text{kg}^{-2} \).

grinding The removal of metal, etc., using an abrasive 'grinding wheel'.

hardness The resistance of metals to plastic deformation, usually by indentation. Measured by tests such as Brinell, Rockwell, and Vickers pyramid.

head The height of a liquid above a datum in a gravity field.

heat engine A system operating on a complete cycle developing net work from a supply of heat.

heat flow rate Heat flow per unit time in a process. Unit: watt (W).

heat transfer The study of heat flow by conduction, convection and radiation.

heat transfer coefficient A coefficient \(h \) relating, heat flow \(q \), area of flow path \(A \) and temperature difference \(\Delta T \) for heat transfer between two phases: \(q = hA\Delta T \).

heat treatment Heating and cooling of solid metals to obtain the desired properties.
helical gear A gear in which the teeth are not parallel to the axis but on a helix.

helix A line, thread or wire curved into a shape it would assume if wrapped around a cylinder with even spacing.

helix angle In screw threads, etc., the angle of the helix to a plane at right angles to the axis.

honing The removal of metal, usually from a cylinder bore, by means of abrasive sticks on a rotating holder.

Hooke's law States that stress is proportional to strain up to the limit of proportionality.

hoop stress The circumferential stress in a cylinder wall under pressure or in a rotating wheel.

hot forming Forming operations such as bending, drawing, forging, pressing, etc., performed above the recrystallization temperature of a metal.

hot wire anemometer An instrument for measuring the flow of air (or other fluids) from the cooling effect on an electrically heated sensor, in the fluid stream, the resistance of which changes with temperature.

hydraulic cylinder A cylinder with piston and piston rod supplied by a liquid under pressure to provide a force with linear motion. The cylinder may be single or double acting.

hydraulic jack A device for lifting heavy loads a short distance using a hydraulic cylinder supplied by a pump, often hand operated.

hydraulic motor A motor operated by high-pressure liquids. Types: radial piston, axial piston, vane, etc.

hydraulic pump A machine which delivers fluids at high pressure. Types: radial piston, axial piston, reciprocating, vane, gear pump.

hydraulics The science relating to the flow of fluids.

hydrocarbon fuels Solid, liquid and gaseous fuels composed primarily of hydrogen and carbon.

hydrodynamic lubrication Thick film lubrication in which the surfaces are separated and the pressurized film supports the load.

hydrodynamics The branch of dynamics which relates to fluids in motion.

hyperbola A conic section of the form \(x^2/a^2 - y^2/b^2 = 1 \).

hyperbolic functions A set of six functions, particularly useful in electrical engineering, involving the terms \(e^x \) and \(e^{-x} \). Analogous to the trigonometrical functions sin, cos, tan, etc., they are sinh, cosh, tanh, cosech, sech, cotanh.

illuminance The quantity of light or luminous flux on unit surface area. Unit: lux \((lx) = 1\) lumen per square metre \((lm-m^{-2})\).

impact extrusion A high speed cold working process for producing tubular components by a single impact by a punch. A slug of material placed in a die flows up and around the punch into the die clearance.

impact test A test to determine the behaviour of materials subjected to high rates of loading in bending, torsion and tension. The quantity measured is the 'impact energy' required to cause breakage of a specimen.

impulse When two bodies collide the impulse of the force during impact is \(\int F dt \). Defined as the change of momentum produced in either body.

impulse reaction turbine A steam turbine with impulse stage(s) followed by reaction stages.

impulse turbine A steam, gas or water turbine in which the working fluid is accelerated through nozzles and impinges on blades or buckets in which there is no pressure drop.

inclined plane For a smooth plane at an angle \(\theta \) to the horizontal, the force parallel to the plane to move a mass \(m \) up it is \(mg \sin \theta \). It is equivalent to a 'machine' having a velocity ratio of \(\cot \theta \).

inductance The property of an electric circuit carrying a current is characterized by the formation of a magnetic field and the storage of magnetic energy. Unit: henry (H).

induction hardening The use of induction heating for hardening metals.

induction heating The heating of conducting materials by inducing electric currents in the material, usually by a high-frequency source.

induction motor An a.c. motor in which the primary winding current sets up a magnetic flux which induces a current in the secondary winding, usually the rotor.

inductor An electric-circuit component which has the property of inductance. Usually a coil with air or magnetic core.

inertia The property of a body proportional to mass, but independant of gravity. Inertia opposes the state of motion of a body.

insulation 1. Heat Material of low thermal conductivity used to limit heat gain or loss, e.g. pipe lagging. 2. Electricity A material with very high resistivity through which there is virtually no flow of current, e.g. plastic covering on wires.
interchange factor When two bodies are involved in
the interchange of heat radiation, the radiation de-
pends upon the emissivities of both bodies. Inter-
change factor is a function of the emissivities which
allows for this.
intercooler A cooler, usually using water, interposed
between air compressor stages.
internal combustion engine (I.C. engine) An engine in
which combustion takes place within a chamber, e.g. a
cylinder, and the products of combustion form the
working fluid, e.g. petrol engine, diesel engine, gas
gas engine.
internal energy The difference between the heat en-
ergy supplied to a system and the work taken out. The
energy is in the form of heat as measured by the
temperature of the substance or its change of state.
inverse square law The intensity of a field of radiation
(light, heat, radio waves) is inversely proportional to
the square of the distance from the source.
investment casting Casting of metal in a mould
produced by coating an expendable pattern made of
wax, plastic, etc., which is removed by heating. Also
'lost wax process'.
involute gear teeth Gear-wheel teeth the flank profile
of which consists of an involute curve. The commonest
form of gear teeth.
isenthalpic process A process taking place at con-
stant enthalpy, e.g. a 'throttling' process.
isentropic efficiency Defined as the actual work from
the expansion of a gas, vapour, etc., divided by the
work done in an isentropic expansion.
isentropic expansion The expansion of a fluid at
constant entropy.
isentropic process A thermodynamic process taking
place at constant entropy.
isobaric process A thermodynamic process taking
place at constant pressure.
isothermal process A constant-temperature process.
Izod test A pendulum type of single blow impact test
using notched test pieces.

jet A fluid stream issuing from an orifice, nozzle, etc.
jet engine An engine incorporating rotary compres-
sor and turbine which produces a high-velocity jet for
the propulsion of aircraft.
jet propulsion The propulsion of vehicles, e.g. boat,
aircraft, by means of a fluid jet.
jig A device to hold a workpiece and guide a tool in
cutting operations.

jig boring Boring carried out on a 'jig borers' on which
the positions of holes can be positioned to a high
degree of accuracy.
journal The portion of a rotating shaft which is
supported in a bearing.
journal bearing A bearing which supports a journal.

Kaplan turbine A propeller water turbine with ad-
justable runner blades which are altered to suit the
load.
key A piece of material inserted between usually a
shaft and a hub to prevent relative rotation and fitting
into a 'keyway'.
K factor A factor giving the proportion of, or number
of, velocity head(s) lost in a pipe or in pipe fittings.
kinematic viscosity The coefficient of viscosity
divided by the fluid density.
kinetic energy The energy of a body arising from its
velocity. For a mass m at velocity v the kinetic energy is
$\frac{1}{2}mv^2$.
labyrinth gland A gland used on steam turbines, gas
turbines, etc., with radial fins on a shaft or surrounding
casing, with small radial or axial clearance to limit
fluid leakage.
lagging Thermal insulation on the surface of a pipe,
tank, etc.
laminar flow (viscous flow) Fluid flow in which
adjacent layers do not mix. It occurs at relatively low
velocity and high viscosity.
lapping The finishing of spindles, bores, etc., to fine
limits using a 'lap' of lead, brass, etc., in conjunction
with an abrasive.
latent heat The heat required to change the 'state' of
a substance without temperature change, e.g. solid to
liquid, liquid to gas. The latent heat per unit mass is the
'specific latent heat'.
lathe A versatile machine tool for producing cylin-
drical work by turning, facing, boring, screw cutting,
etc., using (usually) a single-point tool.
lead The axial advance of a helix in one revolution,
e.g. in screw thread or worm.
lift The component of force on a body in a fluid
stream which is at right angles to the direction of flow.
The force which supports the weight of an aircraft.

lift coefficient A non-dimensional quantity relating
lift to the velocity and density of the fluid and the size of
the body.
GLOSSARY OF TERMS

limit The maximum or minimum size of a component as determined by a specified tolerance.

linear bearing A bearing in which the relative motion is linear, as opposed to rotary.

lock nut An auxiliary nut used in conjunction with a normal nut to lock the latter.

lock washer A name for many types of washer used with nuts, etc., to prevent loosening.

logarithmic mean temperature difference In heat exchangers the 'effective' difference in temperature of the fluids used in calculating heat transfer.

logarithms The logarithm of a number \(N \) to a base \(b \) is the power to which the base must be raised to produce that number. This is written \(\log_b N \) or \(\log N \) if the base is implied. Common logarithms are to the base 10. Natural logarithms (Naperian logarithms) are to the base \(e \) (\(e = 2.7183 \ldots \)).

lubricant Any substance, solid, liquid or gaseous, which may be used to reduce friction between parts.

luminescence flux The flux emitted in a unit solid angle of 1 steradian by a point source of uniform intensity of 1 candela. Unit: lumen (Im).

luminous intensity Unit: candela (cd). The luminance of 'black body' radiation at the temperature of solidification of platinum (2042 K) is \(60 \) cd cm\(^{-2}\).

machinability The relative ease of machining a particular material.

machine In mechanics, a device which overcomes a resistance at one point known as the 'load', by the application of a force called the 'effort' at another point; e.g. inclined plane, lever, pulleys, screw.

machining Removal of metal in the form of chips, etc., from work, usually by means of a 'machine tool'.

Mach number The ratio of velocity of a fluid relative to a body and the velocity of sound in the fluid. Symbol \(M \).

magnetism The science of magnetic fields and their effect on materials due to unbalanced spin of electrons in atoms.

malleability The property of metals and alloys by which they can easily be deformed by hammering, rolling, extruding, etc.

mandrel An accurately turned spindle on which work, already bored, is mounted for further machining.

manometer An instrument used to measure the pressure of a fluid. The simplest form is the 'U tube' containing a liquid. See: pressure, Bourdon gauge.

mass The quantity of matter in a body. Equal to the inertia or resistance to acceleration under an applied force. Unit: kilogram (kg). Symbol: \(m \).

mass flow rate The rate at which mass passes a fixed point in a fluid stream. Unit: kilograms per second (kgs\(^{-1}\)).

matrix The material in a composite in which fibres, whiskers, etc., are embedded.

mean effective pressure (m.e.p.) The average absolute pressure during an engine cycle. It gives a measure of the work done per swept volume.

mechanical advantage In a 'machine', the ratio of load to effort.

mechanical efficiency In an engine, the ratio of useful power delivered to the 'indicated power', i.e. the efficiency regarded as a machine.

Merchant's circle A diagram showing the forces on a single-point machine tool.

metal forming The shaping of metals by processes such as bending, drawing, extrusion, pressing, etc.

micrometer gauge A hand held, U-shaped length gauge in which the gap between measuring faces is adjusted by means of an accurate screw.

mild steel Carbon steel with a maximum carbon content of about 0.25%.

milling The removal of metal by a 'milling cutter' with rotating teeth on a 'milling machine'.

mixed-flow heat exchanger A heat exchanger in which the flow of one fluid is a mixture of types, e.g. alternatively counterflow and cross-flow.

mixed-flow pump A rotodynamic pump in which the general flow is a combination of axial and radial.

mixture strength The ratio of 'stoichiometric' air/fuel ratio, to the 'actual' air/fuel ratio, used for engines. 0.8 is 'weak' and 1.2 is 'rich'.

modulus of elasticity A measure of the rigidity of a material. The ratio of stress to strain in the elastic region.

modulus of section A property of plane sections used in bending-stress calculations. It is equal to the ratio of bending moment to maximum bending stress.

molecular weight The mass of a molecule referred to that of a carbon atom (12.000). The sum of the relative atomic masses in a molecule.

Mollier diagram See: enthalpy-entropy diagram.

moment The moment of a force (or other vector quantity) about a point is the product of the force and the perpendicular distance from the line of action of the force to the point.

moment of inertia The moment of inertia of a body of
mass \(m \) about a point P is equal to \(mk^2 \) where \(k \) is the 'radius of gyration' from P at which the whole mass may be assumed to be concentrated as a ring.

momentum The product of mass and velocity of a body, i.e. \(mv \).

multi-pass heat exchanger A heat exchanger in which one of the fluids makes a series of passes in alternate directions.

natural vibrations Free vibrations in an oscillatory system.

nitriding Introducing nitrogen into solid ferrous alloys by heating in contact with nitrogenous material, e.g. ammonia, cyanide.

non-destructive testing Inspection by methods which do not destroy a part, to determine its suitability for use.

non-flow energy equation The equation in thermodynamics for a non-flow process such as compressing a gas in a cylinder. It states that the change in 'internal energy' of a substance is equal to heat supplied minus the work done.

non-Newtonian fluid A fluid which does not obey the viscosity law. See: coefficient of viscosity.

notch A vee or rectangular cut-out in a plate restricting the flow of water in a channel. The height of water above the bottom of the cut-out gives a measure of the flow.

nozzle A convergent or convergent-divergent tube through which a fluid flows. Used to produce a high-velocity jet.

Nusselt number A dimensionless quantity used extensively in the study of heat transfer. Defined as \(Nu = Qd/k\theta \), where \(Q \) = heat flow to or from a body per unit area, \(\theta \) = temperature difference between the body and its surroundings, \(k \) = thermal conductivity, \(d \) = characteristic dimension of the body.

nut A metal (or other material) collar internally screwed to fit a bolt usually of hexagonal shape but sometimes round or square.

oil seal A device used to prevent leakage of oil, e.g. from a bearing in a gearbox.

orifice A small opening for the passage of a fluid. Types: rounded entry, sharp edged, re-entrant.

orifice plate A circular plate, with a central orifice, inserted in between pipe flanges or in a tank wall to measure fluid flow from the resulting pressure drop.

O ring A toroidal O section ring of a material such as Neoprene used as a seal.

parabola A conic section of the form \(y^2 = 4ax \).

parallel-flow heat exchanger A heat exchanger in which the two fluids flow parallel to one another and in the same direction.

pattern A form made in wood or other material around which a mould is made.

peak value For a waveform the maximum value of a half-wave. For a sine wave it is \(r = \sqrt{2} \times \text{r.m.s.} \) (root mean square) value.

pendulum The 'simple pendulum' consists of a small heavy mass or 'bob' suspended from a fixed point by a string of negligible weight. Its periodic time for small oscillations is \(2\pi \sqrt{L/g} \), where \(L \) = length of string, \(g \) = acceleration due to gravity. The 'compound pendulum' is any body which oscillates about a fixed point a distance \(h \) from the centre of gravity with radius of gyration \(k \). It has an equivalent simple pendulum length of \((h^2 + k^2)/h \).

perfect gas A gas which obeys the 'gas laws'. A gas behaves as a perfect gas as the pressure is reduced.

permanent set Plastic deformation in a material that remains after the load is removed.

Perry–Robertson formula A practical formula for the buckling load for a strut.

p–h chart A pressure–enthalpy chart used for refrigeration calculations.

pH value Negative logarithm of hydrogen ion activity denoting the degree of acidity or alkalinity of a solution. At 25°C: 7 is neutral, a lower number indicates acidity; a higher number indicates alkalinity.

pitch The linear distance between similar features arranged in a pattern, e.g. turns of a screw thread, distance between rivets in a row.

pitch circle An imaginary circle on gear wheels on which the teeth are constructed, a circle on which bolt holes, etc., are pitched, etc.

plain bearing A bearing consisting of a plain bush or sleeve, as opposed to a ball or roller bearing.

plastic deformation Deformation that remains after a load is removed.

plasticity The ability of a metal to deform non-elastically without rupture.

Poisson's equation An expression for laminar flow of a fluid through a circular pipe.

Poisson distribution A statistical distribution characterized by a small probability of a specific event
occurring during observations over a continuous interval. A limiting form of ‘binomial distribution’.

Poisson's ratio The ratio of transverse to axial strain in a body subject to axial load.

polar modulus The polar second moment of area about an axis perpendicular to the area through the centroid divided by the maximum radius.

polar second moment of area The second moment for an axis through the centroid perpendicular to the plane. It is equal to the sum of any two second moments of area about perpendicular axes in the plane.

polymer A material built up of a series of smaller units (monomers) which may be relatively simple, e.g. ethane, or complex, e.g. methylmethacrylate. The mechanical properties are determined by molecular size ranging from a few hundred to hundreds of thousands.

polynomial An algebraic expression of the form $ax^n + bx^{n-1} + cx^{n-2} \ldots px + q$.

polyphase Said of a.c. power supply circuits, usually 3 phase, carrying current of equal frequency with uniformly spaced phase differences.

polytropic process A gas process obeying the law $pvn = \text{constant}$, where $p =$ pressure, $v =$ volume, $n =$ index of expansion not equal to 1 or γ, the ratio of specific heat capacities.

positive displacement pump A pump which displaces a ‘positive’ quantity of fluid each stroke or revolution, e.g. piston pump, gear pump, vane pump.

powder metallurgy The production of shaped objects by the compressing of metal powders ranging in size from 0.1 to 1000 μm.

power The rate of doing work. Unit: watt (W).

power cycle A thermodynamic cycle in which net power is produced, e.g. Otto cycle.

power factor The ratio of total power dissipation in an electrical circuit to the total equivalent volt-ampere applied to the circuit.

press A machine tool with a fixed bed and a guided reciprocating, usually vertical, ram.

press fit An interference or force fit made through the use of a press. The process is called ‘pressing’.

pressure At a point in a fluid, pressure is the force per unit area acting in all directions. That is, it is a scalar quantity; e.g. in a cylinder with a piston, pressure p is the force on the piston divided by the cylinder area.

pressure transducer A device which produces a, usually electrical, signal proportional to the pressure.

prime number A natural number other than 1 divisible only by itself and 1, e.g. 2, 3, 5, 7, 11, 13, ..., 37, ..., 5521, etc.

principal stresses Normal stresses on three mutually perpendicular planes on which there are no shear stresses.

probability The number of ways in which an event can happen divided by the total possibilities. Symbol: p.

proof stress The stress to cause a small specified permanent set in a material.

proportional limit The maximum stress at which strain is directly proportional to stress.

pump A machine driven by a prime mover which delivers a fluid, pumping it to a greater height, increasing its pressure, or increasing its kinetic energy. Main types: rotodynamic, positive displacement.

punch A tool that forces metal into a die during blanking, coining, drawing, etc. The process is called ‘punching’.

push fit A fit similar to a ‘snug’ or ‘slip’ fit defined by several classes of clearance in British and other standards.

pyrometer Device for measuring temperatures above the range of liquid thermometers.

quenching The rapid cooling of heated metal to anneal, harden, etc.

rack and pinion gear A device for changing linear to rotary motion, and vice versa, in which a circular gear, or pinion, engages with a straight toothed bar or rack.

radial clearance Half the diametral clearance. The difference between the radius of a circular hole and a rod or shaft fitting into it.

radial stress The component of stress in a radial direction in pressurized cylinders, rotating disks, etc.

radiation of heat A process by which heat is transferred without the aid of an intervening medium.

radius of gyration The imaginary radius at which the mass of a rotating body is assumed to be concentrated when determining its moment of inertia.

rake The angle of relief given to faces of a cutting tool to obtain the most efficient cutting angle.

Rankine cycle An idealized steam cycle consisting of: pumping water to boiler pressure, evaporation, adiabatic expansion to condenser pressure, and complete condensation to initial point.

Rankine efficiency The thermal efficiency of a Rankine cycle under given steam conditions.
Rankine-Gordon formula An empirical formula for the buckling load of a strut.

reaction The equal opposing force to a force applied to a system. The load on a bearing or beam support.

reaction turbine A water, steam or gas turbine in which the pressure drop is distributed between fixed and moving blades. Strictly an impulse-reaction turbine.

reamer Rotary cutter with teeth on its cylindrical surface used for enlarging a drilled hole to an accurate dimension.

recess A groove or depression in a surface.

rectifier A device for converting a.c. to d.c. by inversion or suppression of alternate half-waves, e.g. diodes, mercury arc rectifier, rotary converter.

refining The removal of impurities from a metal after crude extraction from ore.

refractory Material with very high melting point used for furnace and kiln linings.

refrigerant The working fluid in a refrigerator. It may be a gas or a vapour.

refrigerator A machine in which mechanical or heat energy is used to maintain a low temperature.

regenerative heat exchanger A heat exchanger in which hot and cold fluids, usually gases, occupy the same space alternately.

reheat The process of reheating steam or gas between turbines to obtain higher efficiency. Also the injection of fuel into the jet pipe of a turbojet to obtain greater thrust.

residual stress Stress existing in a body free from external forces or thermal gradient.

resistance In electricity, the real part of impedance of a current-carrying circuit characterized by the dissipation of heat. Unit: ohm (Ω). In physics, the opposition to motion tending to a loss of energy.

resistance thermometer A thermometer using the change of resistance with temperature of a conductor. Platinum is used, as are semiconductors (thermistor).

resistance welding and brazing A process in which the resistance of a pressurized joint causes melting of the parts in contact.

resistivity A property of electric conductors which gives resistance in terms of dimensions. Resistance \(R = \rho L / A \), where \(\rho \) = resistivity, \(L \) = length, \(A \) = area of conductor.

resistor An electrical component designed to give a specified resistance in a circuit.

resistor colour code A method for marking the resistance value on resistors using coloured spots or bands.

Reynold's number A dimensionless quantity used in the study of fluid flow, particularly in a pipe. If \(v \) = velocity, \(d \) = pipe diameter, \(\rho \) = density of fluid, \(\mu \) = viscosity of fluid, the Reynold's number \(Re = (\rho vd) / \mu \).

riveting Joining two or more members by means of rivets, the unheaded end being 'upset' after the rivet is in place.

rivets A permanent fastener for connecting plates in which the unheaded end is upset, or closed, to make the joint. There are many types, e.g. snap head, pan head, pop, explosive.

roller bearing A journal or thrust bearing with straight or tapered rollers running between two 'races'.

rolling Reducing the cross-section of metal stock or the shaping of metal products using 'rolls' in a 'rolling mill'.

rolling bearings The general name given to low-friction bearings using balls and rollers running in 'races'.

root mean square (r.m.s.) A measure of the effective mean current of an alternating current. That is, with the same heating effect as a direct current. The square root of the mean of the squares of continuous ordinates for one cycle.

Roots blower An air compressor for delivering large quantities of air at relatively low pressure. It has two hour-glass shaped intermeshing rotors running with small clearances in a casing.

rotodynamic pump See: 'pump'.

roughness In machining, surface irregularities, the dimensions and direction of which establish the surface pattern. In fluid flow, the height of irregularities in pipes, etc.

runner The rotating part of a water turbine carrying vanes.

running fit Any clearance fit in the range used for relative motion.

screw A general name for fasteners with a screwed shank and a head. Also any section of bar with an external thread.

screw jack A portable lifting machine for raising heavy objects a small height. It uses a nut which carries the load rotated, usually by hand, through a lever system.

screw thread A helical ridge of vee, square, or rounded section formed on or inside a cylinder the form and pitch being standardized under various systems.
second moment of area The second moment of area of a plane figure about any axis XX is \(I_{xx} = \Sigma a r^2 \), where \(a \) = an element of area, \(r \) = perpendicular distance of \(a \) from XX.

seizing The stopping of a moving part by a mating surface due to excessive friction caused by 'galling'.

sets In mathematics, any collection of 'entities' (elements) defined by specifying the elements. See: 'Venn diagram'.

shaft A circular section solid or hollow bar used for the transmission of motion and/or power.

shaft coupling A solid or flexible device for connecting, usually coaxial, shafts.

shear A force causing or tending to cause adjacent parts of a body to slide relative to one another in the direction of the force.

shearing process A machine process in which shapes are produced from plate by shearing through the material.

shear modulus (modulus of rigidity, torsional modulus) The ratio of shear stress to shear strain within the elastic limit.

shear strain and stress See: 'strain' and 'stress'.

shell moulding A mould of thermosetting resin bonded with sand formed on a heated metal pattern to give a 'shell'.

shim A thin piece of metal used between two mating surfaces to obtain a correct fit, alignment or adjustment.

shrink fit An 'interference fit' between a hub and shaft, for example obtained by heating an under-sized hub to give a clearance and allowing it to cool on the shaft. Alternatively, the shaft may be cooled, e.g. by using 'dry ice'.

silver solder A brazing alloy of low melting point containing silver.

simple harmonic motion Oscillatory motion of sinusoidal form, e.g. simple pendulum, mass and spring, electric current in a tuned circuit. It follows the law \(\frac{d^2x}{dt^2} = -\omega^2x \). Abbreviation: s.h.m.

sine bar A hardened steel bar carrying two plugs of standard diameter accurately spaced to a standard distance. Used in setting out angles to a close tolerance.

single-point tool A machine tool which has a single cutting point as opposed to a number of points, e.g. a lathe tool.

sintering The bonding of particles by heating to form shapes.

slotting Cutting a groove with a reciprocating tool in a vertical shaper, broach or grinding wheel.

S–N curve A graph of stress to cause fracture against number of stress fluctuations in fatigue tests.

soldering A similar process to brazing, but with a low-melting-point filler, e.g. alloy of lead, tin, antimony.

solenoid A current-carrying coil often with an iron core used to produce a mechanical force.

solution heat treatment Heating an alloy and allowing one or more constituents to enter into solid solution.

spark erosion machining The removal of metal by means of a high-energy spark between the workpiece and a specially shaped electrode, all immersed in a bath of electrolyte.

specific fuel consumption The mass of fuel used in an engine per unit of energy delivered. Unit: kilograms per megajoule (kg MJ⁻¹).

specific heat capacity The quantity of heat required to raise the temperature of unit mass of a substance by one degree. Unit: J kg⁻¹ K⁻¹.

specific speed A dimensionless quantity used in the study of rotodynamic pumps and turbines. It is the same for geometrically similar machines.

specific volume The volume per unit mass of substance. Unit: cubic metres per kilogram (m³ kg⁻¹).

spinning Shaping of hollow metal sheet parts by rotating and applying a force.

splines Narrow keys integral with a shaft engaging with similarly shaped grooves in a hub used instead of keys.

spot facing Machining flat circular faces for the seating of nuts, bolts, etc.

spring A device capable of elastic deflection for the purpose of storing energy, absorbing shock, maintaining a pressure, measuring a force, etc.

spring washer A name for many types of washer which deflect when compressed and prevent a nut, etc., from slackening.

stagnation temperature The temperature which would be reached by a stream of fluid if it were brought to rest adiabatically.

standard deviation The root of the average of the squares of the differences from their mean \(\bar{x} \) of a number \(n \) of observations \(x \): standard deviation \(\sigma = \sqrt{\frac{\sum(x-x^2)}{n}} \)

static balancing Balancing of a rotating mass in one plane only. See: ‘dynamic balancing’.

static pressure The pressure normal to the surface of a body moving through a fluid.
statics The branch of applied mathematics dealing with the combination of forces so as to produce equilibrium.

steady flow energy equation For a flow process this states that \(h_1 + (C_1^2/2) + Q = h_2 + (C_2^2/2) + W \), where \(h_1, h_2 \) = inlet and outlet enthalpies, \(C_1, C_2 \) = inlet and outlet velocities, \(Q \) = heat supplied, \(W \) = work out.

steam plant A power plant operating on a steam cycle, e.g. steam power station.

steam turbine A turbine using steam as a working substance. See: 'turbines'.

steel Iron based alloy containing manganese, carbon and other alloying elements.

stiffness The ability of a metal, etc., to resist elastic deformation. It is proportional to the appropriate modulus of elasticity.

stoichiometric air/fuel ratio The mixture of air and fuel for engines and boiler furnaces which contains just sufficient oxygen for complete combustion.

strain The change in shape or size of a stressed body divided by its original shape or size, e.g. 'linear strain', 'shear strain', 'volumetric strain'.

strain energy The work done in deforming a body elastically.

strain gauge A metal grid or semiconductor rod on a backing sheet which is cemented to a strained body. The increase in length alters the electrical resistance of the grid or rod from which the strain may be deduced.

strain-gauge bridge A form of Wheatstone bridge in which strain gauges are connected to give a sensitive reading of resistance change.

strain-gauge rosette A combination of three strain gauges which give the principal strains in two-dimensional stress situations.

strain hardening The increase in hardness caused by plastic deformation.

strain rate The time rate of stress application used in testing.

stress Force per unit area in a solid. The area is perpendicular to the force for tensile stress and parallel to it for shear stress. Unit: newtons per square metre (N m\(^{-2}\)).

stress concentration factor The ratio of the greatest stress at a 'stress raiser' to the nominal stress in a component.

stress raiser A local change in contour in a part, e.g. a hole, notch, change of section, etc., which gives rise to an increase in stress.

stress relieving Heating a material to a suitable temperature and holding it long enough to remove residual stresses, then slowly cooling.

stroboscope A flashing lamp of precisely variable periodicity which can be synchronized with a moving object to give a stationary appearance.

sudden contraction A sudden decrease in the cross-sectional area of a conduit, involving a loss of energy.

sudden enlargement A sudden increase in the cross-sectional area of a conduit, involving an energy loss.

superheated steam Steam heated at constant pressure out of contact with the water from which it was formed, i.e. at a temperature above saturation temperature.

surface finish The condition of a surface after final treatment.

surface grinder A grinding machine which produces a flat surface on the workpiece which is mounted on a reciprocating table.

surface hardening Heat treatment such as nitriding, cyaniding, etc., which increases the surface hardness of a metal.

surface tension Interfacial tension between two phases, one of which is a gas.

swaging Forming a reduction in a metal part by forging, squeezing or hammering, sometimes when rotating.

swarf Chips removed from a workpiece during cutting operations.

tachogenerator An electric generator producing a voltage proportional to the speed of a shaft to which it is connected. Connected to a voltmeter calibrated in speed of rotation.

tachometer An electrical or mechanical instrument which measures the rotational speed of a shaft, etc.

tap A cylindrical cutter used to produce an internal screw thread.

temperature The degree of hotness or coldness with reference to an arbitrary zero, e.g. the melting point of ice, absolute zero.

temperature coefficient of resistance A coefficient giving the change in resistance of a piece of material per degree change in temperature.

tempering The reheating of hardened steel or cast iron to a temperature below the eutectoid value to decrease hardness and increase toughness.

tensile strength Ratio of maximum load to original cross-sectional area of a component. Also called 'ultimate strength'.

tensile stress Tensile load divided by cross-sectional area.

tension The state of stress in a part which tends to increase its length in the direction of the load.
thermal shock The development of a steep temperature gradient in a component and accompanying high stress.

thermal stress Stress in a body due to a temperature gradient.

thermistor A semiconductor mixture of cobalt, nickel and manganese oxides and finely divided copper in the form of a bead with leads. The device has a high temperature coefficient of resistance and is used for temperature measurement.

thermocouple A device consisting of a junction of dissimilar metals which produce an e.m.f. approximately proportional to the temperature difference between the hot and cold junctions at the ends.

thermodynamic process A gas process involving changes in pressure, volume, temperature or state.

thermoelectricity The interchange of heat and electric energy, e.g. as in a thermocouple.

thermometer An instrument for measuring temperature.

thermoplastic Any plastic which can be melted by heat and resolidified, the process being repeatable any number of times.

thermosetting resin Compositions in which a chemical reaction takes place while being moulded under heat and pressure. The properties are changed and the product is resistant to further change.

thick cylinder A cylinder in which the thickness of wall is large compared with the bore. Stress analysis is more complicated than for a 'thin' cylinder subject to internal pressure.

thin cylinder A cylinder with a wall thickness relatively small compared with the bore. Under internal pressure a uniform hoop stress may be assumed with no radial stress.

three phase An electric supply system in which the alternating potentials on the three wires differ in phase by 120°.

throttling process The process involving the flow of a fluid through a small tortuous passage destroying all kinetic energy; there is no change in enthalpy.

thrust bearing A shaft bearing designed to take axial load through a collar on the shaft. It may be a flat surface or have balls or rollers.

thyristor A semiconductor device used for switching heavy currents.

tie rod A rod or bar which takes a tensile load.

timing belt A drive belt between two pulleys having teeth which engage with grooves in the pulleys.

timing diagram A circular diagram showing the angular positions of valve opening and closing in two- and four-stroke engines.

tolerance The specified permissible deviation from a dimension or permissible variation in the size of a component.

toroid (torus) A solid generated by rotating a circle about an external point in its plane.

torque The algebraic sum of couples, or moments of external forces, about the axis of twist. Also called 'torsional moment'.

torsion A twisting action resulting in shear stress.

torsional oscillation Oscillations, e.g. in a shaft in which it is twisted periodically in opposite directions.

total head pressure The sum of dynamic pressure and static pressure in fluid flow.

toughness The ability of a metal to absorb energy and deform plastically before fracturing. Determined by impact tests.

transducer A device which converts a physical magnitude of one form of energy to another form according to a specified formula, e.g. mechanical to electrical energy as in a microphone.

transformer An electrical device without moving parts which transfers alternating current energy, usually with a change in voltage.

transistor A three-electrode semiconductor device used to give a voltage, current or power gain.

triaxial stress A state of stress where none of the three principal stresses is zero. Three-dimensional stress.

turbine A prime mover running on steam, gas or water, in which energy is imparted to rows of moving blades on a rotor.

turbulent flow Fluid flow in which particle motion varies rapidly in velocity and direction; characterized by a high Reynolds's number.

turning Removing material from a rotating workpiece using a single-point tool as in a lathe.

twisting moment See: 'torque'.

two-dimensional stress A stress situation where two stresses act at right angles.

two-stroke cycle An engine cycle of two piston strokes, i.e. one revolution.

ultimate strength (ultimate tensile strength, UTS) The maximum tensile stress a material will withstand before failure.

ultrasonics Relating to sound with a frequency above the audible range, i.e. above about 15 kHz.

universal gas constant This is equal to the gas constant for any gas multiplied by its molecular weight, i.e. \(R_g = MR \).
upthrust The force on a floating body due to fluid pressure. Equal to the weight of fluid displaced.

U tube A simple type of pressure-measuring device, or manometer, consisting of a glass (or perspex, etc.) U-shaped tube partially filled with a liquid, e.g. water, mercury, and provided with a scale. A pressure difference across the U tube causes a difference in liquid levels.

vacuum forming A shaping process applied to a sheet of thermoplastic which is heated and sucked into a mould by vacuum.

vacuum pump General name for a pump which displaces a gas against atmospheric pressure.

vane A curved metal plate used in pumps and turbines for directing flow. Same as ‘blade’.

vane anemometer A type of anemometer with a vaned rotor which rotates at a speed proportional to a fluid velocity passing through the rotor. A mechanical counter or magnetic transducer counts the revolutions which are expressed as velocity.

vane pump A type of positive-displacement pump with sliding radial vanes in slots in a rotor running eccentrically in a fixed casing.

vapour compression cycle A reversed Carnot cycle used in refrigerators.

vapour cycle A thermodynamic cycle using a vapour as the working substance, e.g. steam.

vapour process A thermodynamic process using a vapour, e.g. steam.

vector A vector, or vector quantity, has magnitude, sense and direction, e.g. velocity, force.

vee belt A power-transmission belt with a truncated vee cross-section running in a vee-groove pulley.

velocity The rate of change of position of a point with respect to time. Unit: metres per second (m s\(^{-1}\)).

velocity head The head equivalent of the kinetic energy of a fluid equal to \(v^2/(2g)\).

velocity pressure Velocity head expressed as a pressure equal to \((\rho v^2)/2\). The pressure realized by suddenly stopping a fluid stream.

velocity ratio In a ‘machine’ the ratio of distance moved by the ‘effort’ to that moved by the ‘load’.

Venn diagram In logic and mathematics, a diagram consisting of shapes, e.g. circles and rectangles, that show by their inclusion, exclusion or intersection the relationship between ‘classes’ and ‘sets’.

Venturi A convergent–divergent duct in which pressure energy is converted to kinetic energy at the throat.

Venturi meter A flowmeter in which the pressure drop in a Venturi is used to give an indication of flow.

Vernier In instruments, such as the Vernier caliper gauge, a small movable auxiliary scale attached to a slide in contact with a main scale. It enables readings to be taken to, usually, a tenth of a division.

vibration damper A device fitted to a reciprocating engine crankshaft to minimize torsional oscillations.

Vickers’ hardness test A hardness test using the indentation from a pyramidal diamond.

viscosity The resistance of a fluid to shear force. The shear force per unit area is a constant times the velocity gradient, the constant being the coefficient of viscosity. Units: newton-seconds per square metre (Ns m\(^{-2}\)). Symbol: \(\mu\).

viscous flow The same as ‘laminar flow’.

volute The snail-shell-shaped casing into which the impeller of a centrifugal pump discharges, terminating in a circular pipe. A similar casing is used at the inlet of water turbines.

vortex flow Rotational flow. In a ‘forced vortex’ the fluid rotates as a solid cylinder. In a ‘free vortex’ (such as an eddy in a water surface) the velocity of rotation decreases with radius.

washer An annular, usually flat, piece of metal, etc., used under a nut to distribute the load.

weir A dam in a water channel sometimes used in flow measurement.

weld A union made by welding.

weld group A group of welds used to make a joint.

welding The joining of two or more pieces of material by applying heat and/or pressure, with or without a filler material, to produce local fusion.

welding rod Filler in rod or wire form used in welding.

weldment An assembly of several parts joined by welds.

wet steam A steam–water mixture such as results from partial condensation of dry saturated steam.

whirling speed (critical speed) The speed at which excessive deflection of a shaft occurs being numerically the same as the natural frequency of transverse vibration or harmonics.

white metal General term for low-melting-point alloys of lead, tin, bismuth, zinc and antimony used for plain bearings.

work A type of energy involving mechanical effort, e.g. the output from an engine.
work hardening See: 'strain hardening'.
workpiece A part upon which work is done in process operations.
worm A part of a worm gear with helical single or multi-start thread.
worm gear A high speed-ratio gear in which a single or multi-start worm engages with a worm wheel with circumferential teeth. The axes are at right angles and non-intersecting.
wrought iron Iron containing fibres of slag (iron silicate) in a ferrite matrix.
yield stress (yield point) The stress at which a material exhibits a deviation from proportionality of stress and strain. Steels tend to have a definite yield point, for ductile metals an offset of typically 0.2% is used.
Young's modulus See: 'modulus of elasticity'.

Index

ABS (acrylonitrile-butadiene-styrene), 242
Acceleration,
 angular, 58
 centripetal, 58
 linear, 58
Acetal resin, 238
Acetals, 243
 drilling cutting speeds and feeds, 180
 turning characteristics, 176
Acetic acid, cubic expansion, 265
Acme thread, 76
Acrylic acid diester adhesives, 252
Acrylic solvent cement adhesives, 252
Acrylic (Perspex), 242
Acrylic acid diester adhesives, 242
Acrylic (Perspex), 242
Acrylic acid diester adhesives, 252
Acrylic solvent cement adhesives, 252
Adhesives,
 complementary adhesives and adherents, 229
 elastomer, 251–2
 joint types, 256
 natural, 251
 rubber (elastomer) based, 251–2
 service temperatures, 254
 shear strengths, typical, 256
 thermoplastic, 252–4
 thermost, 253–4
Adiabatic mixing, gases, 105
Admiralty gunmetal,
 applications, 230
 composition and mechanical properties, 255
Aerodynamic drag, automobiles, 78, 165
Air,
 density, 264
 properties and analysis, 109
 specific heat capacity, gas constant and molecular weight, 110
 thermal conductivity, 131
 velocity of sound in, 309
Air compressors see Compressors
Airfuel ratio, 139–43
Air motors, reciprocating, 126
Alcohol, velocity of sound in, 309
Alkyls, 244
Alphabet, Greek, 310
Aluminium and alloys of,
 coefficients of expansion, 265
 corrosion resistance, 241
 density, 263
 drill angles, 182
general cutting speeds, feed rates and power, 192–3
latent heat of fusion, 108
lubricants for drilling/reaming/tapping, 181
millling cutting speeds and feed rates, 187
negative rake cutting speeds, 194
properties alloyed, 243–3
properties pure, 240
resistance temperature coefficient, 277
specific heat capacity, 110
 as steel alloy element, 222
 surface emissivity, 137
 thermal conductivity, 131
 thermolectric sensitivity, 275
turning cutting speeds, 175
turning power consumption, 174
velocity of sound in, 309
welding fillers and fluxes, 209
welding processes, 214
wrought aluminium,
 endurance limits and fatigue stress, 18–19
 heat-treatable, properties, 231
 non-heat-treatable, properties, 231
Aluminium bronze, specific heat capacity, 110
Aluminium oxide, properties, 259
Ammonia,
 boiling point, 109
 latent heat of evaporation, 108
 specific heat capacity, gas constant and molecular weight, 110
 thermal conductivity, 131
 Ammonium nitrate, freezing temperature, 265
 Amorphous polymers see Rubber
Ammal alcohol, density, 264
Anemometers,
 cup, 294
 hot wire, 284
 vane, 284
Anergy, gases, 103–4
Angle measurement, 270–3
Antifriction, cubic expansion, 265
Archimedes principle, 146
Arc welding, 210–16
see also Welding
Area, SI equivalents, 292
Argon,
 density, 264
 specific heat capacity, gas constant and molecular weight, 110
 thermal conductivity, 131
Asbestos,
 as clutch and brake material, 86
 density, 264
 friction coefficient with cast iron, 86
 Asbestos board, surface emissivity, 137
 Asbestos cloth, thermal conductivity, 131
Ash (timber), mechanical properties, 230
Asphalt,
 friction coefficient with rubber, 86
 thermal conductivity, 132
Automobile mechanics,
 aerodynamic drag, 78, 165
 braking torque, 79
 forces on a gradient, 77
 power, torque and efficiency, 78–9
 rolling resistance, 77
 tractive effort, 78
BA (British Association) screw threads, 8
 dimensions, 300
Bakelite, drill angles, 182
Balancing,
 reciprocating masses, 70
 rotating masses, 70
 one mass only, 68–9
 several in one plane, 69
 in several planes, dynamic unbalance, 69–70
Ball-bearing power screw, 76–7
Ball-bearings see Bearings
Balls, contact stresses,
 ball and concave surface, 51
 ball on flat surface, 51
 two balls, 51
Ballast, wood, thermal conductivity, 131
Barometers,
 aneroid, 279
 mercury, 279
Bars,
 thick, bending stresses, 28–9
 thin, bending stresses, 29–31
 torsion in, 6–7
see also Beams
Beam leaf springs, 35
Beams, bending.
- basic theory, 25
- continuous beams, 27
- deflection coefficient, 26
- moment coefficient, 26
- slope coefficient, 26
- standard cases, 25-7
- thick bars, rings and crane hooks, 27-9
- Beams, transverse vibration, 31-2
- Bearing metal, 234
- Bearings, ball,
 - contact stresses, 51
 - journal, 93, 94
 - self-aligning, 93
 - service factor, 95
 - thrust, 93
- plain
 - automobile and aircraft engine, 91
 - centrifugal pumps, 91
 - clearance, 92
 - friction coefficient, 94
 - generators and motors, 91
 - hoisting machinery, 91
 - land steam turbine, 91
 - lightly loaded, 90-1
 - load capacity, 91
 - machine tools, 91
 - marine steam turbine, 91
 - surface finish, 92
- plain, materials for,
 - aluminium alloy, 92
 - babbitt, tin and lead base, 92
 - cadmium base, 92
 - copper lead, 92
 - graphite materials, 92
 - lead, alkali-hardened, 92
 - lead bronze, 92
 - nylon, 92
 - phenolics, 92
 - porous metals, 92
 - rubber, 92
 - silver plus overlay, 92
 - teflon, 92
 - tin bronze, 92
- roller,
 - contact stresses, 52
 - friction coefficient, 95
 - needle roller, 94
 - roller journal, 94
 - service factor, 95
 - taper roller, 94
- materials for, 262
- shields, seals and groves, 94
- Bench (timber), mechanical properties, 250
- Belleville washer spring, 36
- Belt drives,
 - flat, 65
 - timing, 66
 - service factors, 66
 - sizes, 66
 - vee, 65
- Bending,
 - beams, 24-7
 - bending moment (BM), 38
 - crane hooks, 29
 - measurement of, 272
 - press tools for, 203
 - rings, 28-31
 - shafts, 22-3
 - stepped bars, 21
 - stress, 2
 - thick curved bars, 27-8
 - thin curved bars, 29-31
 - see also Bars; Beams, bending; Rings, bending stresses
- Benzene,
 - cubical expansion, 265
 - formula and molecular weight, 140
 - thermal conductivity, 131
- Benzoyle,
 - analysis, 145
 - caloric value, 144
- Bernoulli equation, 148
- Beryllium,
 - applications, 233
 - density, 263
- Beryllium-copper,
 - applications, 230
 - springs, 235
- Bevel gears, 98
- BHN see Brinell hardness number
- Bimetam thermometers, 278
- Birch timber, mechanical properties, 250
- Bismuth,
 - density, 263
 - latent heat of fusion, 108
 - low melting point alloys, 216-7
 - thermoelectric sensitivity, 275
- Bisulphide of carbon, latent heat of evaporation, 108
- Bitumen, thermal conductivity, 132
- Bitumen adhesive, 254
- Bituminous coal,
 - analysis, 145
 - caloric value, 144
- Black body, surface emissivity, 137
- Black heart cast iron (BS)
 - specific heat capacity, 137
- Block, 88
 - expanding shoe, 88
- Block and tackle, 67
- BM (bending moment), 38
- Boilers,
 - efficiency, 144
 - factors of safety, 309
- Boiling points, common substances, 109
- Bolts and bolted joints,
 - clearance holes for, 300
 - factors of safety, 309
 - ISO metric sizes, 8, 299
 - strength of, 8-11
 - threads for, 8
 - types of, 8-12, 293-4
 - see also Nuts; Screw threads
- Brandy pressure gauge, 281
- Boyle's law, 102
- Brackets, stress in bolts, 11
- Brakes,
 - automobile braking torque, 79
 - band, 87
 - block, 87-8
 - disk, 88
 - double block, 88
 - expanding shoe, 88
 - materials, friction characteristics of, 85-6
 - Brass,
 - friction coefficient with bronze: hard wood, 85
 - specific heat capacity, 110
 - surface emissivity, 137
 - thermal conductivity, 131
- Brasses,
 - applications, 230
 - Brinell hardness numbers, 239
 - coefficients of expansion, 265
 - composition and mechanical properties, 228-9, 238
 - corrosion resistance, 241
 - density, 263
 - drilling, 180, 182
 - general cutting speeds, feed rates and power, 192-3
 - lubricants for drilling/reaming/tapping, 181
 - milling cutting speeds and feed rates, 187
 - negative rake cutting speeds, 194
 - spring brass, 235
 - turning, 174, 175, 177
 - welding fillers and fluxes, 209
- Brazing, 206
 - metals for, 261
 - recommended usage, 214
 - BR (butadine rubbers), 248
 - Breeze block, thermal conductivity, 132
- Brickwork,
 - coefficients of expansion, 265
 - dark, surface emissivity, 137
 - density, 264
 - factors of safety, 108
 - thermal conductivity, 132
- Brine, saturated, boiling point, 109
 - Brinell hardness number (BHN), 239, 285
- British Association (BA) screw threads, 8
 - dimensions, 300

 - Bromine, boiling point, 109
 - Bronze,
 - applications, 230
 - corrosion resistance, 241
 - expansion coefficient, 265
 - friction coefficient with bronze, cast iron, 85
 - general cutting speeds, feed rates and power, 192-3
 - high-strength bronze, 269
 - lubricants for drilling, reaming and tapping, 181
 - milling cutting speeds and feed rates, 187
 - specific heat capacity, 110
 - turning, 175, 177
 - welding fillers and fluxes, 209
- BSF (BS Fine) threads, 8
- BSP (BS Pipe) threads, 8
- BSW (BS Whitworth) threads, 8
- Buckling loads, struts, 46-8
- BUNA S rubbers, 248
- Buoyancy, 146
- Butadine rubbers (BR), 248
- Butane,
 - boiling point, 109
 - formula and molecular weight, 140
 - specific heat capacity, gas constant and molecular weight, 110
 - Buttress thread, 76
- Butyl rubbers, 249
 - adhesives for, 255
 - butyl rubber adhesives, 252
- CAB (cellulose acetobutyrate), 242
Cadmium,
names, 233
density, 263
expansion coefficient, 265
specific heat capacity, 110
thermal conductivity, 131
thermoelastic sensitivity, 275
Calcium chloride, freezing temperature, 265
Calcium silicate, thermal conductivity, 131
Caliper gauge, 268
Calorific values, fuels, 144
see also Fuels
Cams,
axial face, 74
circular arc with flat follower, 73
constant acceleration/deceleration, roller follower, 74
constant velocity, knife edge follower, 74
simple harmonic motion, 74
tangent with roller follower, 73
Capstan lathe operations, 176
see also Turning
Carbide,
as a cutting material, 189
cutting tools, 191
Carbon,
formula and molecular weight, 140
resistance temperature coefficient, 277
thermal conductivity, 132
thermoelastic sensitivity, 275
Carbon dioxide,
boiling point, 154
density, 296
formula and molecular weight, 140
specific heat capacity, gas constant and molecular weight, 110
thermal conductivity, 131
velocity of sound in, 309
Carbon graphite,
as clutch and brake material, 86
friction coefficient with steel, 86
Carbon monoxide,
calorific value, 144
density, 264
formula and molecular weight, 140
specific heat capacity, gas constant and molecular weight, 110
thermal conductivity, 131
Carbon steel,
applications, 219–20
as a cutting material, 189–90
factors of safety, 308
properties, 220–1
as spring materials, 234
tempering temperature and colour, 221
see also Steel
Carbon tetrachloride, thermal conductivity, 131
Cardan joint, 72
Carnot heat engine cycle, 178
Cars see Automobile mechanics
Casting,
centrifugal, 197
die, 172, 197
investment (lost wax), 172, 197–8
sand, 172, 196
shell, 196–7
Cast iron,
black heart iron (BS 310), 219
as clutch and brake material, 85–6
endurance limits and fatigue stress, 18
friction coefficient with cast iron;
hardwood; leather; steel, 85–6
grey iron (BS 1452), 188, 192, 219, 238
latent heat of fusion, 108
as machine tool slide material, 56
pearlitic (BS 3333), 219
spheroidal graphite (SG) iron (BS 2789), 218
White heart iron (BS 309), 219
see also Iron
Cavitation, centrifugal pumps, 168
Cellular plastics, 246–7
Cellulose acetate, adhesives for, 255
Cellulose acetobutyrate (CAB), 242
Cellulose nitrate, 242, 247
adhesives for, 255
Cellulose propionate (CP), 242
Cement, thermal conductivity, 132
Centrifugal casting, 197
Centrifugal fans see Fans, centrifugal
Centrifugal force, 58
Centrifugal pumps see Pumps, centrifugal
Centripetal force and acceleration, 58
Ceramic adhesive, 254
Ceramic cutting tools, 191
Ceramics, properties, 259
Cermets, compositions and applications, 259–60
Channels, liquid flow through, 154
Chamfer law, 102
Charpy test piece, toughness testing, 286
Chemical symbols, metals and alloying elements, 239
Chlorinated materials as cutting fluids, 196
Chlorine, specific heat capacity, gas constant and molecular weight, 110
Chlorofluorocarbons, cubical expansion, 265
Chlorosulphonated polyethylene (CSM) rubbers, 249
Chrome plated steel, as clutch and brake material, 85–6
friction coefficient with phosphor bronze; powder metal; steel, 85–6
Chrome vanadium steel (springs), 235
Chromium,
applications, 233
coefficient of expansion, 265
density, 263
as steel alloy element, 222
thermal conductivity, 131
Chaplygin’s equation of three moments, 27
Clutches, centrifugal, 89–90
cone, 89
disk, 89
multiplate, 89
uniform pressure theory, 89
uniform wear theory, 89
materials, friction characteristics of, 85–6
Cobalt,
density, 263
expansion coefficient, 265
as steel alloy element, 222
thermal conductivity, 131
Coke, calorific value, 144
Cold rolling, general characteristics, 172
Combustion see Fuels
Composites,
acronyms for, 257
elastic modulus for, 257
fibres, wires and whiskers, arrangements and properties, 257–8
Compressed straw slub, thermal conductivity, 131
Compression measurement, 272
Compressors, air, reciprocating, 124
reciprocating multi-stage, 125
Roots blower, 125
vane, 125–6
Concrete,
density, 264
friction coefficient with rubber, 86
surface emissivity, 137
thermal conductivity, 132
Conduction of heat see Heat, conduction
Conical helical springs, 34
Constantan,
density, 263
specific heat capacity, 110
thermal conductivity, 131
thermoelectric sensitivity, 275
Contact adhesives, 251
Continuity equation, liquids, 148
Convection, heat see Heat, convection
Copper and alloys of, alloys, applications, 229
composition, 228–9
mechanical properties, 228–9
coefficient of expansion, 265
corrosion resistance, 241
density, 263
drill angles, 182
latent heat of fusion, 108
lubricants for drilling, reaming and tapping, 181
milking cutting speeds and feed rates, 187
negative rake cutting speeds, 194
pipe sizes, domestic, 308
pure copper, applications, 229
properties, 240
recommended welding processes, 214
resistance temperature coefficient, 277
specific heat capacity, 110
as steel alloy element, 222
surface emissivity, 137
thermal conductivity, 131
thermoelectric sensitivity, 275, 276
turning cutting speeds, 175
velocity of sound in, 309
welding fillers and fluxes, 209
Cork,
as clutch and brake material, 86
friction coefficient with cast iron; steel, 86
Corkboard, thermal conductivity, 131
Corrosion, metals, galvanic corrosion, 241
galvanic table, 241
prevention, 240
resistance to, 240–1
resistant metals, 260
stress corrosion cracking, 241
Costs, machining, 195
INDEX

Cylinders, 181
Crane hooks, bending stresses, 29
CP (cellulose propionate) rubber, 249
Cupronickel, applications, 230
Corrosion resistance, 241
Cutting, gas flame, 210
Cutting power and speed for turning, 273-4
Cutting tool materials, 191
Cutting tools, 191

Cotton wool, thermal conductivity, 131

Cylinder, centre of percussion, 50

Shrink fit, stresses and pressures, 50
Thermal shrinkage, 50
Thick, stress with internal pressure, 49
Thin, buckling with external pressure, 48
Hemispherical ends, distortion and stress, 49
Short with circular ends, 49
Stress with internal pressure, 48

DAP (diallylphthalate), 244
Adhesives for, 255

Deflection, 135
Beams see Beams, bending
Flat plates, 53-5
See also Bending
Density
SI equivalents, 292
Various materials, 263-4

DERV, analysis, 145

Dial gauge (dial test indicator), 268

Dialllylphthalate (DAP), 244
Adhesives for, 255

Diatomic earth, thermal conductivity, 131

Diamonds, coefficient of expansion, 265
As a cutting material, 189
DIAP (diallylphthalate), 244

Diatomic earth, thermal conductivity, 131

Die casting see Casting
Diecel, analysis, 145
Calorific value, 144

Diesel (constant-pressure) heat engine cycle, 119-20

Douglas fir (timber), properties and permitted stresses, 250

Drag coefficients, various bodies in a gas, 161-5

Drawing, Flat metal blanks, 200
Metal processing, general characteristics, 172
Press tools for, 203

Drilling, core drills, 179
Cutting lubricants, 181
drill angles, 182
Helix and point angles, 179
Metals, cutting and feed speeds, 180
Plastics, cutting and feed speeds, 180
Reamers, 179
Drop forging, 199-200
Dryness fraction, steam regenerative cycles, 113
vapours, 106, 107
Dunkley’s method, frequency of beam vibration, 32
Duralium, expansion coefficient, 265
Dynamic balancing, 69-70

Dynamic balancing, 69-70

Ebonite, coefficient of expansion, 265

Efficiency, automobiles, 78-9
Boilers, 144
Centrifugal pumps, 166-7
gas turbines, 117-18
Heat engines, 120
Heat transfer by fins, 130
Internal combustion engines, 121-3
Machines, 63
Roots blower, 125
Screw threads, 75, 84
Spur gears, 97
Steam plant, 113-16
Water turbines, 170-1
Worm gears, 99

Elastomers see Rubber

Electric properties, good conducting materials, 261
Good insulating materials, 261
High resistance materials, 261
Semiconducting materials, 261
Electrolytes, resistance temperature coefficient, 277

Endurance limit see Fatigue

Energy, Kinetic, 58-9
Potential, 59
Rotational kinetic, 59
SI equivalents, 292-3
Stored in flywheel, 71
Stress, 59

Energy equations, gases, 103

Engine cycles see Heat engine cycles

Engineering stock, steel section see Steel section engineering stock

Engines, bearings, 91
Internal combustion, compression-ignition, 122
Four stroke spark ignition, 120-1, 122
Performance curves, 122-3
Timing diagrams, 122
Two-stroke spark ignition, 121-2
Reciprocating movement formulae, 70-1

Enthalpy, gases, 103

Impulse-reaction turbine, 115
Steam regenerative cycle, 113
Vapours, 106-7

Entropy, gases, 103
Vapours, 106, 107
EP (ethylene propylene) rubbers, 249
Epoxide resins, 254
Epoxy resins, 245

Exergy, gases, 103

Ethane, Density, 264
Formula and molecular weight, 140
Specific heat capacity, gas constant and molecular weight, 110

Ethanol (ethyl alcohol), boiling point, 109
cubical expansion, 265
Density, 264
Formula and molecular weight, 140
Freezing point, 266
Latent heat of evaporation, 108
Specific heat capacity, 110
Thermal conductivity, 131

Ether, boiling point, 109
cubical expansion, 265
Latent heat of evaporation, 108

Ethyl alcohol see Ethanol

Ethyl cellulose, adhesives for, 255

Ethyl chloride, thermal conductivity, 131
Ethylene glycol, boiling point, 266
Ethylene propylene (EP) rubbers, 249
Ethylentetrafluoroethylene (ETFE), 243

Ether theory, struts buckling, 47

EVA (ethylene-vinyl acetate), 242, 246

Exergy, gases, 103-4
Expanded polystyrene, thermal conductivity, 131

Extrusion, convective, 271
Extrusion, cold, 201
Hot, 201
Impact, 201
Process characteristics, 172

Factor of safety (FS), common components, 309
Common materials, 308
Definition, 5-6

Fasteners, bolted or riveted brackets, 11
Bolts and bolted joints, 8-11, 293-4
Bolts in shear, 11-12
Fasteners, continued
nuts and washers, 295-7
pins, 298
rivets, 12, 297-8
screws, 295
welds, strength of, 13-15
Fatigue, cast iron, 18
non-ferrous metals and alloys, 18-19
plastics, 19
steel, 18
welds, 19-20
Feeler (thickness) gauge, 267
Felt, adhesives for, 255
as clutch and brake material, 86
friction coefficient with cast iron; steel, 86
thermal conductivity, 132
FEP (fluoroethylenepropylene), 243
Fibre glass, applications and properties, 238
Filters, welding, 209
Fins for heat transfer see Heat transfer
from fins
Firebrick, thermal conductivity, 132
Fit types and tolerances, 216-17
Flexural rigidity, struts, 46
Flow of gases, see Flow of gas
Flow of liquids, see Liquid flow
Flow measurement, 281-4
Fluid flow see Gas flow; Liquid flow
Fluids, cutting, applications, 195-6
Fluon, 243
Fluorocarbon rubbers, 249
Fluorocarbon thermoplastic, 242-3
adhesives for, 255
Fluoroethylenepropylene (FEP), 243
Fluorosilicone rubbers, 249
Fluxes, welding, 209
Flywheels, acceleration, energy stored; moment of inertia, 71-2
annular ring, 16.72
solid disc, 15-16, 71
spoked wheel, 16, 72
stresses in, 15-16
thick cylinder, 16
thin ring, 15, 72
Fourn plastics, 246-7
Force, SI equivalents, 292
Force ratio see Mechanical advantage
Forces, balance of, 56
belt drives, 65
centrifugal, 58
centrifugal, 58
gravitational, 62
moment of, couple, 57
polygon of, 56
rate of change of momentum, 59
resultant of, 56
triangle of, 56
wrenches and pulleys, 67-8
Forging, closed die, general characteristics, 172
hand and drop, 199-200
Form, see Engine
Form factors, springs, 37
Four-stroke engines see Engines
Francis water turbine, 170-1
Freeze, boiling point, 109
Freon, refrigerant, 265
Frequency of vibration
beams, 31-2
forced damped, 82
free undamped, 80
simple harmonic motion, 80
three mass system, 83
Fricion, fluids in pipes, 149-50
on inclined plane, 83
laws, 83
rolling, 83-4
screw thread, 84
wedge, 84
Fricion coefficients, band brake materials, 86
clutch and brake materials, 85-6
general materials, 85
machine tool slide materials, 86
rubber sliding on asphalt, concrete, 86
worn gears, 100
FS see Factor of safety
Fuels, air/fuel ratio, 139-43
boiler efficiency, 144
calorific values, 144
calorific values, 144
chemical analysis, 145
chemical formulae, 140
combustion equations, 140
combustion products, 141-4
consumption, SI equivalents, 293
fuel oil analysis, 145
gas, 144
gaseous, 143-4, 145
mixture strength, 139-40
molecular weights of, 140
solid and liquid, 140-3, 145
stoichiometric air/fuel ratio, 139, 140
Galvanic corrosion, 241
galvanic potentials for pure metals, 241
Gases, anergy, 103-4
blast-furnace, analysis, 145
calorific value, 144
Boyle's law, 102
Charles law, 102
coal gas, analysis, 145
calorific value, 144
common gas constants, 110
equation energy, non-flow, 103
steady flow, 103
enthalpy, 103
entropy, 103
exergy, 103-4
internal energy, 103
irreversible processes, 105
adiabatic mixing, 105
throttling (constant enthalpy), 105
mixtures, Dalton's law, 105
natural gas, analysis, 145
calorific value, 144
producer gas, analysis, 145
calorific value, 144
reversible non-flow processes, constant energy (isentropic), 104
constant pressure, 104
constant temperature (isothermal), 104
constant volume, 104
polytropic, 104-5
Universal gas constant, 102
velocity of sound in, 161
Gases as cutting fluids, 196
Gas flow, drag coefficients for various bodies, 161-3
isothermal flow in pipes, 161
measurement, 281
through oriﬁce, 161
see also Fans
Gas-shielded metal arc welding, 213
Gas turbines, simple cycle, 117
simple cycle with heat exchanger, 118
Gas welding, 207-9
Gauge blocks, 269
Gears, classification, 96
double helical, 98
epicyclic, 100
factor of safety, 309
helical spur, 97-8
herringbone, 98
spiral bevel, 98
curt, 97
straight bevel, 98
teeth.
metric, 96
part names, 96
stress concentration factors, 24
worm, 99-100
Germanium, thermoelectric sensitivity, 275
Glass, density, 264
density, 255
development, 255
specific heat capacity, 265
speciﬁc heat capacity, 110
surface emissivity, 137
thermal conductivity, 132
velocity of sound in, 309
Glass ceramics, adhesives for, 255
Glass fibre/wool, thermal conductivity, 132
Glues, animal, 251
casein, 251
fish, 251
vegetable, 251
Glycerine, cubical expansion, 265
freezing point, 266
thermal conductivity, 131
Gold, coefﬁcient of expansion, 265
density, 263
properties, pure, 260
resistance temperature coefﬁcient, 277
speciﬁc heat capacity, 110
thermal conductivity, 131
thermoelectric sensitivity, 275
Governors, Hartnell, 75
Porter, 75
INDEX

Watt, 75
Gradient force, automobiles, 77
Grafoil, expansion coefficient, 265
Graphite, specific heat capacity, 110
Grashof number, heat convection, 132
Gravitation, forces of mutual attraction, 62
gyroscopic, gravitational constant, 62
Greek alphabet, 310
Grey cast iron, 188, 192, 218, 238

see also Iron

Grinding, process calculations, 189
wheels, 188
Gunmetal, applications, 230
coefficient of expansion, 265
composition and mechanical properties, 229

Gyroscope, 60–1

Hand forging, 199–200
Hardboard, thermal conductivity, 132
Hardness numbers, Brinell/Rockwell/Vicker’s comparison, 239
measurement, 285
Hardwood, friction coefficient with brass; cast iron; hardwood; leather; metal, 85
Hartnell governor, 75

Heat, boiling points of common substances, 109
conduction, through cylinder wall, 129
through flat wall, 128–9
convection, forced laminar flow in pipe, 134
forced turbulent flow, 134–5
Grashof number, 132
natural from horizontal pipe, 132–3
natural from horizontal plate, 133–4
natural from vertical plate or cylinder, 13
Nusselt number, 132
Prandtl number, 132
Reynold’s number, 132
Stanton number, 132
good conducting materials, 262
good insulating materials, 262
heat capacity, 102
latent heat, 102
latent heats of common substances, 108
mixing of fluids, 102
radiation, 135–7
emissivity of surfaces, 136–7
geometric factor, 136
interchange factors, 135–6
specific heat, capacity, 102
relationships, 103
thermal conductivity, gases, 131
insulating materials, 131
liquids, 131
metals, 131
miscellaneous materials, 132
plastics, 131
refrigerants, 131

transfer from fins, 129–31
Heat engine cycles
Carnot, 118–19
constant pressure, 119
diesel (constant pressure), 119–20
dual combustion, 120
Otto (constant-volume), 119
practical engine, 120
Heat exchangers,
multipass and mixed flow, 138
shell and tube, 137–8
steam condenser, 138–9
Helical springs, 33–4
Helical spur gears, 97–8
Helium, density, 264
specific heat capacity, gas constant and molecular weight, 110
thermal conductivity, 131
High-speed steels, for cutting, 189–90
Hoists, 68
Hooke’s joint, 72
Hooks, bending, 29
Hoop stress, cylinders, 49
spheres, 50
Hot extrusion, general characteristics, 172
Hot rolling, general characteristics, 172
Hydraulic jack, 147
Hydrocarbon fuels see Fuels
Hydrogen, boiling point, 109
calorific value, 144
density, 264
formula and molecular weight, 140
specific heat capacity, gas constant and molecular weight, 110
thermal conductivity, 131
velocity of sound in, 309
Hydrostatics, 146–7
Hydrostatic (three dimensional) stress, 2
Ice, coefficient of expansion, 265
density, 264
latent heat of fusion, 108
specific heat capacity, 110
thermal conductivity, 132
Impact centre of percussion, cylinder, 60
sphere, 60
uniform thin rod, 60
Impact coefficient of restitution, 59
Impact extrusion, general characteristics, 172
process and application, 201
Impact stress, 3
Impulse, definition, 59
Impulse turbines see Steam plant Inconel
applications, 234
density, 263
springs, 235
thermal conductivity, 131
Inoxers, 243
Internal combustion engines see Engines Investment casting, 197–8
Iron, alloy irons, 219
black heart cast iron, 219, 238
Brinell hardness numbers, 239
coefficient of expansion, 265
corrosion resistance, 240–1
density, 263
drilling cutting speeds and feeds, 180
factors of safety, 308
general cutting speeds, feed rates and power, 192–3
grey cast iron, 188, 192, 218, 238
lubricants for drilling, reaming and tapping, 181
malleable iron properties, 219
milling cutting speeds and feed rates, 187
pearlitic cast iron, 219
properties pure, 240
recommended welding processes, 214
resistance temperature coefficient, 277
specific heat capacity, 110
spheroidal graphite (SG) iron, 218, 238
thermal conductivity, 131
thermoelectric sensitivity, 275
turning, cutting speeds, 175
power consumption, 174
ruke angle, 177
velocity of sound in, 309
welding fillers and fluxes, 209
white heart cast iron, 219
see also Cast iron

Isentropic gas process, 104
ISO metric metal sheet, strip and wire sizes, 307
ISO metric nut and bolt sizes, 299
ISOM metric threads, 8
Isoprene rubbers, 249
ISO straight-sided splines, 803
Isothermal gas flow in pipes, 161
Isothermal gas process, 104
Izod impact test, toughness testing, 286
Jack, hydraulic, 147
Jets, 157–60
aircraft engine, 160
water jet boat, 159–60
Johnson’s parabolic formula, struts buckling, 47

Kapok, thermal conductivity, 132
Kerosene, analysis, 145
boiling point, 109
calorific value, 144
latent heat of fusion, 108
specific heat capacity, 110
thermal conductivity, 131

Keys see Shafts

Keyways, stress concentration factors, 24
Knuckle joints, stresses in, 4–5
Krypton, density, 264

Laminar flow, through annulus, 157
in circular pipes, 156
between flat plates, 156
Laminated carbide, as a cutting material, 189
Laminated plastics, 245–6
Latent heats, evaporation, 108
fus.ion, 108
Lathes see Turning
Lathe-tool nomenclature and setting, 176–8
Lead, applications, 233
coefficient of expansion, 265
density, 263
latent heat of fusion, 108
lead-tin alloys, applications, 234
low melting point alloys, 236–7
properties pure, 240
resistance temperature coefficient, 277
specific heat capacity, 110
as steel alloy element, 222
thermal conductivity, 131
thermoelectric sensitivity, 275
velocity of sound in, 309
Leaf springs, 35
Leather, adhesives for, 255
as clutch and brake material, 86
friction coefficient with cast iron; hardwood; metal, 85–6
Length, SI equivalents, 291–2
Length measurement, 267–9
Levers, 63
Lignite, analysis, 145
calorific value, 144
Limestone, thermal conductivity, 132
Limits and fits, fit types, 217
terminology, 216
tolerances, 217
Lipowitz’ alloy, 237
Liquid flow, Bernoulli equation, 148
channels, 154
continuity equation, 148
jets, 158–60
laminar flow, 155–7
between flat plates, 156
in circular pipes, 156
through annulus, 157
measurement, 154–5, 281
notches, 153
orifices, flow in, 152–3
over weirs, 153
pipe nozzle flow measurement, 154–5
in pipes, friction, 149–50
laminar flow, 150
pressure loss in fittings and section changes, 150–2
roughness, 150
series and parallel, 150
pumps, centrifugal, 163–8
Reynold’s number, 148, 150, 155
venturi flow measurement, 154–5
viscosity, 155–6
Liquids, coefficients of cubical expansion, 265
Lost wax casting, 197–8
Loudness of various sounds, 309
Lubricant materials, 263
MA see Mechanical advantage
Machines, efficiency, 63
mechanical advantage, 63
velocity ratio, 63
Machine tool bearings, 91
Machine tool slide material frictions, 86
Machining metals, general characteristics, 172
Magnesia, thermal conductivity, 132
Magnesium and alloys of, applications, 234
coefficients of expansion, 265
corrosion resistance, 241
density, 263
drill cutting angles, 182
latent heat of fusion, 108
recommended welding processes, 214
specific heat capacity, 110
thermal conductivity, 131
turning cutting speeds, 175
Magnetic materials, low-loss, 261
permanent, 261
Mahogany timber, mechanical properties, 250
Malleable irons, properties, 219
Manganese, applications, 234
density, 263
manganese steel, drill angles, 182
as steel alloy element, 222
Manganin, resistance temperature coefficient, 277
Manometers, 279–80
Marble, surface emissivity, 137
Mass, SI equivalents, 292
Mass flow rate, SI equivalents, 292
Measurement, angle, 270
bending, 272
compression, 272
flow, 281
fluid velocity, 283–4
hardness testing, 285–7
length, 267–9
pressure, 279–81
rotational speed, 284–5
strain, 271–3
temperature, 274–8
tension, 272
torque, 273
toughness testing, 286–7
Mechanical advantage (MA), machines, 63
screw threads, 84
Melamine, 246, 247
adhesives for, 255
Methane, density, 264
formula and molecular weight, 140
specific heat capacity, gas constant and molecular weight, 110
thermal conductivity, 131
Methanol, boiling point, 109
density, 264
formula and molecular weight, 140
freezing point, 266
latent heat of evaporation, 108
thermal conductivity, 131
Methyl alcohol, thermal conductivity, 131
Methylpentene, adhesives for, 255
Mica, thermal conductivity, 132
Micrometers, 267–8
Mild steel see Steel
Milling, cutter types, 183–5
cutting speeds, 186–7
metal removal rates, 188
power for peripheral, 186
process, 182
table feed rates, 186–7
Metal wool quilt, thermal conductivity, 132
Mixtures, combustion see Fuels
Molecular weights, common gases, 110
Molybdenum, density, 263
specific heat capacity, 110
as steel alloy element, 222
thermal conductivity, 131
Moment of a force, 57
Moments of inertia, flywheels, 71–2
Momentum, definition, 59
Monel, applications, 234
density, 263
lubricants for drilling, reaming and tapping, 181
as spring, 235
thermal conductivity, 131
turning cutting speeds, 175
Moon, basic parameters, 62
Motors, air, 126
Movement ratio see Velocity ratio
Machines, bending, 203
braze, 261
casting see Casting
chemical symbols for, 239
coating for, 261
corrosion-resistant, 260
cutting, general data, 192–6
surface finish and roughness, 193
see also Drilling, Grinding; Milling; Turning
friction coefficient with metal; hardwood, 85
high-strength, 260
high temperature, 260
malleable, 260
press tool theory, 202–3
processes, general characteristics, 172
see also Aluminium; Copper; Iron; Steel etc.
Metal sheet dimensions, strip and wire, 307
Methane, density, 264
formula and molecular weight, 140
specific heat capacity, gas constant and molecular weight, 110
thermal conductivity, 131
Methanol, boiling point, 109
density, 264
formula and molecular weight, 140
freezing point, 266
latent heat of evaporation, 108
thermal conductivity, 131
Methyl alcohol, thermal conductivity, 131
Methylpentene, adhesives for, 255
Mica, thermal conductivity, 132
Micrometers, 267–8
Mild steel see Steel
Milling, cutter types, 183–5
cutting speeds, 186–7
metal removal rates, 188
power for peripheral, 186
process, 182
table feed rates, 186–7
Metal wool quilt, thermal conductivity, 132
Mixtures, combustion see Fuels
Molecular weights, common gases, 110
Molybdenum, density, 263
specific heat capacity, 110
as steel alloy element, 222
thermal conductivity, 131
Moment of a force, 57
Moments of inertia, flywheels, 71–2
Momentum, definition, 59
Monel, applications, 234
density, 263
lubricants for drilling, reaming and tapping, 181
as spring, 235
thermal conductivity, 131
turning cutting speeds, 175
Moon, basic parameters, 62
Motors, air, 126
Movement ratio see Velocity ratio
INDEX

Multiplying factors, 291

Muntz metal.

applications, 229

composition and mechanical properties, 228

Naphthalene, boiling point, 109

Neon, density, 264

Neoprene adhesives, 252

Neoprene rubbers, 249

adhesives for, 255

Newton's alloy.

Nusselt number, heat convection.

Nozzles.

Nozzle flowmeter.

Nitrile adhesives.

Norway spruce (timber), properties and applications, 229

Nitrogen.

Nitrile rubbers.

Nitric acid, boiling point, 109

Nimonic.

Nickel and alloys of.

Newton's laws of motion.

Newton's alloy.

Neoprene adhesives.

Napthalene, boiling point.

Muntz metal.

Multiplying factors.

INDEX 337
338
Plates, (continued)
rectangular,
clamped edges. 54
simply supported, 54
Platinum.
applications, 234
coefficient of expansion, 265
density, 263
properties pure, 240
resistance temperature coefficient, 277
specific heat capacity, 1 IO
thermal conductivity, 131
thermoelectric sensitivity, 275
Plexiglas, 242
Plumber’s solder. applications, 234
Plywood, thermal conductivity, 132
Poisson’s ratio, definition, 1.5
Polyacetal, 242
Polyacrylate adhesive, 253
Polyacrylic rubbers, 249
Polyamide adhesives, 253
Polyamides, 243
adhesives for, 255
Polycarbonate,
adhesives for, 255
drilling cutting speeds and feeds, 180
properties and applications, 244
turning characteristics, 176
Polychloroprene adhesives, 252
Polychloroprene rubbers, adhesives for, 255
Polyester, 245, 246, 248
adhesives for, 255
Polyester acrylic adhesive, 253
Polyester (unsaturated) adhesives, 254
Polyethersulphone. 243
Polyethylene see Polythene
Polyethylene terephthalate (PETP), 243
adhesives for, 255
Polyformaldehyde. adhesives for, 255
Polyimides,
laminated plastics, 246
thermosets, 245, 254
Polyisoprene natural rubber, 248
Polyphenylene oxide, 244
Polyphenylene sulphide, 244
Polypropylene, 244
adhesives for. 255
density, 264
drilling cutting speeds and feeds, 180
turning cutting speeds and feeds, 176
Polypropylene oxide (PPO). 243. 247
Polystyrene,
adhesives for, 255
applications, 238, 244, 247
density, 264
drilling, 180, 194
expanded, 246
high-density foam, 246
milling properties, 194
properties, 238, 244, 247
turning, 176, 194
Polysulphide rubber adhesives, 252
Polysulphide rubbers, 249
Polysulphone, 244
Polytetrafluoroethylene (FTFE), 243, 247
Polythene (polyethylene),
adhesives for, 255
density, 264
drilling cutting speeds and feeds, 180
foams, 243,246

MECHANICAL ENGINEER’S DATA HANDBOOK

high density, 243, 247
thermal conductivity, 131
turning characteristics, 176
Polytropic gas process, 104
Polyurethane,
adhesives for, 255
as an adhesives, 252
foam, 246
thermal conductivity, 132
rubbers. 249
Polyvinyl acetate adhesive, 252
Polyvinyl alcohol adhesive, 252
Polyvinyl chloride (PVC). 244, 246. 247
adhesives for, 255
Poplar (timber). mechanical properties, 250
Porcelain,
coeffcient of expansion, 265
thermal conductivity, I32
Porter governer. 75
Potassium, thermoelectric sensitivity, 275
Powdered metal,
advantages, 236
as clutch and brake material, 85-6
friction coefficient with cast iron; chrome
plated steel, 85-6
metals used, 236
process, 236
Power,
automobiles, 78-9
definition, 59
metal cutting requirements. 192-3
SI equivalents. 293
PPMA. 242
PPO (polypropylene oxide), 243
Prandtl number, heat convection, 132, 135
Press tools, 202-3
Pressure,
in liquids, 146-7
SI equivalents, 292
Pressure measurement,
barometers, 279
Bourdon pressure gauge, 281
manometers, 279-80
pressure transducers, 281
pressure units, 279
Press work, 202-3
Projectiles, 63
Proof stress, steel, 287
Propane,
boiling point, 109
density. 264
formula and molecular weight, 140
specific heat capacity, gas constant and
molecular weight, 1 IO
Propene, formula and molecular weight,
140

Protective coatings, corrosion prevention,
240
PTFE (polytetrafluoroethylene). 243. 247
density, 264
thermal conductivity, 13I
turning, drilling, milling properties. 194
Pulleys, 67
Pump bearings, 91
Pumps, centrifugal.
cavitation, 168
characteristics, 167-8
head. 166
inlet angles. 167
power and efficiency, I67

principle. I 6 5 4
specific speed concept. 171
PVC (polyvinyl chloride). 244. 246, 247
density. 264
thermal conductivity. I3 I
turning. drilling. milling properties. 194
Pyrometers, 278
Quartz, coefficient of expansion. 265
Radiation.
heat, 135-7
emissivity of surfaces, 1 3 6 7
Railway axle bearings. 91
Rake angle, turning, 177
Rankin cycle,
dry saturated steam, I I2
with reheat. I13
with superheat, 112-13
RankinGordon formula, struts buckling,
47
Reaming, 179
cutting lubricants, 181
see olso Drilling
Reciprocating masses, balancing, 70
Redux adhesive. 254
Refrigerators,
gas refrigeration cycle, 127-8
pressure-enthalpy chart, 127
vapour compression cycle, 127
Reheat Factor. steam turbines. 116
Resilience.
shear. 6
tension and compression, 6
Resistance temperature coefficients, 277
Resistance thermometers. 277
Resolution of forces. 57
Resorcinol formaldehyde (RF) adhesives,
253
Restitution. coefficient of. 59
Reynolds number,
fluid flow, 148, I50
heat convection. 132, 135
Rhodium, thermoelectric sensitivity, 275
Rings, bending stresses, 29-31
Rivets,
stress in. 12
types Of, 297-8
Rockets, 63-4
Rockwell hardness, 239, 285
Rock wool, thermal conductivity, 132
Rod, uniform. centre of percussion. 60
Rolled metal,
process characteristics, 172
rolled sections, 204-5
beams, 204
channels, 204
columns, 204
joists, 204
rolling mills, 202
Roller bearings,
contact stresses on roller and surfaces,
52
see also Bearings
Rolling resistance, automobiles, 77
Roots blower, 125
Rope, wire, factors of safety, 309
Rose’s alloy, 237
Rotameter. 282
Rotating masses. balancing. 68-9


Rotational speed measurement, 284–5
Roughness, metal cutting, 193
Rubber couplings, 41–7
see also shafts
Rubber (elastomers),
adhesives, 251–2
adhesives for, 255
cellular, 247
coefficient of expansion, 265
densities, 264
friction coefficient with asphalt; concrete; metal; road, 85–6
natural, 248
specific heat capacity, 110
surface emissivity, 137
synthetic, 248–50
thermal conductivity, 132
velocity of sound in, 309
Rubber springs, 37
Rule, engineer’s, 267
Salt, specific heat capacity, 110
Sand,
screws, types of,
Scots pine, mechanical properties, 250
Screws, types of, 295
Screw
Sand casting, 196
Semi-conductors, resistance temperature coefficient, 277
Shafts,
couplings,
bonded rubber, 43–5
claw, 42
disk, 41
gear, 42
Metallux, 42
metal spring, 42
moulded rubber insert, 41
Muff, 42
Oldham, 42
rubber-bushed pin, 41
rubber-tyre type, 41
sleeve, 42
solid bolted, 43
solid pinned sleeve, 43
solid sleeve, 43
critical speed of whirling, cantilevered shaft with disk, 44
central disk shaft, 44.45
Dunkerley’s calculation method, 45
energy calculation method, 45
non-central disk shaft, 44–5
uniform shafts, 45
factors of safety, 309
with gears, 39
keys,
feather, 40
Gib-head, 40
rectangular, 40.302
round, 40
saddle, 40
Woodruff, 40
with levers, 39
resultant bending moment, 38–9
spline, 41
stress concentration factors, 21–4
torque diagram, 39
torsional vibration, single disk on shaft, 46
two disks on shaft, 46
torsion in, 6–7
Shearing press tools, 203
Shear stress see Stress, shear
Shell casting, 196–7
Shore scleroscope, hardness testing, 285
Shrink fit, cylinders, 50
SI equivalents, 291–3
Silica, specific heat capacity, 110
Silica gel, corrosion prevention, 240
Silicon,
specific heat capacity, 110
as steel alloy element, 223
thermoelectric sensitivity, 275
Silicon-chromium steel (spring), 235
Silicone rubber adhesives, 252
Silicone resin adhesives, 253
Silicone rubber adhesives, 252
Silicone rubbers, 249
adhesives for, 255
Silicones, 245, 246, 248
Silicon foams, 246
Silicon-manganese steel (spring), 235
Silicon nitride, properties, 259
Silver,
applications, 234
expansion coefficient, 265
latent heat of fusion, 108
properties pure, 240
resistance temperature coefficient, 277
specific heat capacity, 110
thermal conductivity, 131
thermoelectric sensitivity, 275
Silver solder, 205
Simple harmonic motion, frequency, 80
periodic time, 80
Sine bar, angle measurement, 270
Sintering, general characteristics, 172
Slag wool, thermal conductivity, 132
Slate,
exansion coefficient, 265
thermal conductivity, 132
Slenderness ratio, struts, 46
Slides, machine tools, materials for,
characteristics of, 86
Slop gauges,
angle measurement, 270
linear measurement, 269
Sodium,
density, 263
thermoelectric sensitivity, 275
Sodium silicate adhesive, 254
Solar system, 62
Soldering,
common solder alloys, 260
joint types, 206
silver solder, 205
soft solder, 205
Sound,
loudness of various, 309
sound absorbing materials, 262
velocity in a gas, 161
velocity in various media, 309
Specific heat, gases, definition, 103
Specific heat capacities, common
substances, 110
Sphere,
centre of percussion, 60
hoop stress, thin with internal pressure, 49
stresses, thick with internal pressure, 49–50
Spheroidal graphite (SG) iron, properties, 218, 238
Spinning metal processing, general
characteristics, 172
Spiral springs see Springs
Spline dimensions, ISO straight-sided, 303
Splines see Shafts
Spring materials,
alloy steels, 235
carbon steels, 235
modulus of, 235
non-ferrous alloys, 235
spring brass, 235
Springs,
Bellville washer (disk or diaphragm), 36.38
clock, 38
conical helical compression, 34
cylindrical torsion, 37
factors of safety, 309
helical compression, 32,33–4
helical tension, 33
helical torsion, 33
leaf, 35
rubber,
cylindrical shear, 37
two-block shear, 37
spiral, 34
strain energy/form factors, 37–8
torsion bar, 35–6
vibration, axial, 33
torsional, 33
Wahl factor, 32
Spur gears, 97
Square threads, 76
Stainless steel,
austentic, 225–7
ferritic, 225–7
Martensitic, 225–7
Stainless steel, (continued)

springs, 235

see also Steel

Stanton number, heat convection, 132
Steam, density, 264

Steam plant,

condenser heat exchangers, 138–9
impulse-reaction turbine, 115–16
impulse turbine,

pressure compounded, 115
reheat factor and efficiency, 116
single-stage, 114
velocity compounded, 115

Rankin cycle,

dry saturated steam, 112
with reheat, 113
with superheat, 112–13
regenerative cycle, 113

Steel,

applications, 237
Brinell hardness numbers, 239
British standards for, 228
chrome-vanadium (spring), 235
as clutch and brake material, 85–6
coefficient of expansion, 265
corrosion resistance, 139, 140
density, 264

drilling, cutting speeds, feed rates and power, 180, 192–3
efficiency, 116
endurance limits and fatigue stress, 18
friction with various materials, 85–6
hard-drawn spring, 235
high-speed steels, 190
high strength, 260
lubricants for drilling, reaming and tapping, 181
as machine tool slide material, 86
milling cutting speeds, feed rates and power, 187–8, 192–3
negative rake cutting speeds, 194

oil-tempered spring, 235
physical properties, 237
silicon-chromium (spring), 235
silicon-manganese (spring), 235
steel tools, 190

surface emissivity, 137
tensile testing, 286–7
thermal conductivity, 131

turning,

cutting speeds, feed rates and power, 174–5, 192–3

rake angle, 177
velocity of sound in, 309
welding fillers and fluxes, 287–9
welding processes, 214

see also Carbon steel; Stainless steel

Steel alloys

Steel alloys,

alloy elements, 221
aluminium, effect of, 222
cast high-alloy properties, 224
cobalt, effect of, 222
copper, effect of, 222
crane hooks, 29

gear teeth, 24
grooved shafts, 22
keyways, 24
plate with hole, 20
screw threads, 24
stepped shafts, 23
welds, 24

contact, balls and rollers, 51–2

circular, 53
circular with hole, 55

rectangular section, 306

section, 305

Steel alloys, (continued)

nickel, effect of, 222

silicon, effect of, 222

sulphur, effect of, 223
titanium, effect of, 223
tungsten, effect of, 223
vanadium, effect of, 223

Steel section engineering stock, dimensions of,
circular section, 304

hollow section, 305

Steelwork, factors of safety, 309

Stoichiometric air/fuel ratio, 139, 140

Stone,

density, 264

factors of safety, 308

Straight-line formula, struts buckling, 47

strain, definition, 1

measurement, 271–3, 287

Strain energy, shear, 6

springs, 38
tension and compression, 6

torsion, 7

Strain gauges, 271–3

Strength of materials, high

strength-to-weight materials, 262

Stress, 1–7

balls, contact, 51–2

bars, thick curved, 28–9

thin curved, 29–30

bending, 2, 4–5

bending and direct combined, 2

bending and torsion, 2–3

bolts, 10, 11–12

butt joints, 12

compound, 2, 3

compressive, 25

crushing, 4–5, 12

cylinders, 48–50

diameter, 50

fatigue stress, 17, 18–20

fluctuating, 17

repeated, 17

flywheels, 15–16

hoop, 49

hydrostatic, 2

impact, 3

knuckle joints, 4–5

lap joints, 12

plates, circular, 53
circular with hole, 55

rectangular concentrated load, 54

rectangular uniform load, 54

rings, 28–31

rivets, 12

rollers, contact, 52

rotational, 15–16

shear, 1–4, 5, 10–12

shrink fit cylinders, 50

SI equivalents, 292

Soderberg diagram, 18

spheres, 49–50

struts, 48

tensile, 4

welds, 12–15

stress concentration factors, 24

Stress corrosion cracking, 241

Stroboscope, 284

Struts,
buckling,

Stress,
cutting speeds, 176

turning speeds and feeds, 176

Styrene butadiene rubber adhesives, 252

Sulphur,

formula and molecular weight, 140

latent heat of fusion, 108

as steel alloy element, 223

Sulphur dioxide,

density, 264

formula and molecular weight, 140

latent heat of evaporation, 108

specific heat capacity, gas constant and molecular weight, 110

thermal conductivity, 131

Sulphuric acid,

boiling point, 109

cubical expansion, 265

Sulphur monoxide, formula and molecular weight, 140

Sun, basic parameters, 62

Surface finish, metal cutting, 193

Surface finish, metal cutting, 193

Tectonic, (timber), mechanical properties, 250

Symbols for physical quantities, 288–9

Tachometers,
electrical, 284

mechanical, 284

Tantalum, thermoelectric sensitivity, 275

Tapered bores, measurement of angle, 270

Tapping,
cutting lubricants, 181

drill sizes for, 181

see also Drilling

Technical terms, abbreviations, 290

Teeth see Gears

Teflon, 243

Tellurium, thermoelectric sensitivity, 275

Temperature, conversion, 107–8

Temperature measurement, 278–9

thin-wall thermocouples, 278

liquid-in-glass thermometers, 274
INDEX

pyrometers, 278
reference temperatures
(freezing/melting/boiling points), 279
resistance thermometers, 276–7
sensitive paints, 278
thermists, 277–8
thermocouples, 274–6
Temperatures, freezing mixtures, 265
tensile testing, steel, 286–7
tension, stepped bar with fillets, 21
tension measurement, 272
textiles, adhesives for, 255
TFE-fluorocarbon, drilling cutting speeds and feeds, 180
turning characteristics, 176
Thermal conductivity coefficients, various
materials, 131
2
Thermal resistance, 128
Thermistors, temperature measurement,
277–8
Thermocouple temperature measurement,
274–6
limits for combinations, 275
thermal emf for combinations, 276
thermoelectric sensitivity of materials, 275
Thermodynamics see Heat
Thermometers, alcohol, 274
bimetal, 278
electronic thermocouple, 276
mercury in glass, 274
mercury in steel, 274
resistance, 276–7
sensitive paint, 278
see also Temperature measurement
Thermoplastics, 242–4, 246
as an adhesive, 252–3
turning characteristics, 176
turning, drilling, milling properties, 194
Thermosets, 244, 246–7
as an adhesive, 255
properties, 253–4
Threads see Screw threads
Throttling, irreversible gas process, 218
Thermopiles, 275
Turbine blades and rotors, factors of
safety, 309
Turbine engines, 91
Turbine flow meters, 282
Turbines, impulse (Pelton) water, 170
reaction (Francis) water, 170–1
specific speed concept, 171
see also Gas turbines; Steam plant
Turning, cutting power, 173–4
cutting speeds, 175
cutting tool forces, 173
force versus cutting speed, 174
force versus depth of cut, 174
force versus feed rate, 175
lathe operation standard times, 176
lathe-tool nomenclature and setting,
176–8
metal cutting, single point, 173
parting-off tools, 178
plastics, 176
rack angle, 177
tool life, 174
tool setting, 178
Turbent, cubical expansion, 265
latent heat of evaporation, 108
specific heat capacity, 110
Turret lathe operations, 176
see also Turning
Two-stroke engines see Engines
Type metal, 234
UF (urea formaldehyde foam), 246, 247
UNC (Unified Coarse) threads, 8, 301
UNF (Unified Fine) threads, 8, 301
Units, abbreviations, 291
Units for physical quantities, 288–9
Universal gas constant, 102
Tension measurement, 282
Tension, stepped bar with fillets, 21
Tension bar spring, 35–6
Torsion, hollow circular shaft, 67
rectangular bar, 6–7
shells, 22, 23
solid circular shaft, 6
stress, 2.6,7
thin bar and thin section, 7
thin tubular section, 7
torsion bar spring, 35–6
Toughness tests, 286
TPX (methylpentene), 243
Tractive effort, automobiles, 78
Tufnol, 245
Tungsten, applications, 234
coefficient of expansion, 265
density, 263
properties pure, 240
specific heat capacity, 110
as steel alloy element, 223
thermal conductivity, 113
Thermoelectric sensitivity, 275
Turbocharger, 245
Turbochargers, 245
Turbochargers, 245
Vapours, as cutting fluids, 196
dryness fraction, 106, 107
enthalpy, 106–7
enthalpy-entropy diagram, 107
Vee belts see Belt drives
Vee thread, 76, 84
Vehicles on curved horizontal track,
overturning speed, 60
skidding speed, 60
Velocity, SI equivalents, 292
Velocity of flow meters, 283, 4
Velocity ratio (VR), 5
machines, 63
screw threads, 84
winches and pulleys, 67–8
Venturi, flow meters, 282
Liquid flow measurement, 154–5
Vibration, beams, 31–2
forced damped, 81–2
free damped, critical, 81
free, 81
heavy, 81
light, 81
free undamped, 81
spring mass, 80
torsional, 80
helical springs, 33
simple harmonic motion, 79–80
three mass system, 83
Vicker’s pyramidal hardness number (VPN), 239, 285
Viscosity, dynamic, 156
kinematic, 156
water, 156
Volume, SI equivalents, 292
Volume flow rate, SI equivalents, 292
VPN see Vicker’s pyramidal hardness number
VR see Velocity ratio
Wahl factor, springs, 32
Washers, helical spring lock, 10
tub washer, 10
two coil spring, 10
types of, 296–7
Water,
boiling point, 109
cubical expansion, 265
density, 264
heavy, specific heat capacity, 110
latent heat of evaporation, 108
specific heat capacity, 110
Water, (continued)

- Steam, formula and molecular weight, 140
- Surface emissivity, 137
- Thermal conductivity, 131
- Velocity of sound in, 309
- Viscosity, 156

Water based fluids as cutting fluid, 195

Water vapor, thermal conductivity, 131

Watt governor, 75

Wedge, friction forces, 84

Weirs, liquid flow through, 153

Welding

- Arc
 - Edge preparation, 214
 - Fillet welds, 211-12
 - Fusion joint processes, 211
 - Gas shielded, 213
 - Recommended usage, 214
 - Resistance seam, 212-13
 - Solid/liquid joint processes, 211
 - Solid phase joint processes, 211
 - Spot welding, 212
- Gas
 - Carburizing flame, 208
 - Edge preparation, speed and metal thickness, 207-8
 - Fillers and fluxes, 209
 - Flame cutting, 210
 - Methods, 208-9

Wheels, cast iron, factors of safety, 309

White heart cast iron (BS 309), properties, 309

Wood alcohol, 219

Wood's metal, 237

Work

- Definition, 58-9
- SI equivalents, 292-3

Worm gears, 99

Xenon, density, 264

Yield stress, steel, 287

Young's modulus, steel testing, 287

Zinc

- Applications, 234
- Corrosion resistance, 241
- Density, 263
- Latent heat of fusion, 108
- Properties pure, 240
- Specific heat capacity, 110
- Thermal conductivity, 131
This book provides the student and professional mechanical engineer with a reference text of an essentially practical nature. Uncluttered by text, an extensive use of illustrations and tables provides quick and clear access to information. It also includes examples of detailed calculations on many of the applications of technology used by mechanical and production engineers, draughtsmen and engineering designers.

CONTENTS

Strengths of materials: Types of stress • Strength of fasteners • Stress due to rotation • Fatigue and stress concentration • Bending of beams • Springs • Shafts • Struts • Cylinders and hollow spheres • Contact stress • Flat plates

Applied mechanics: Basic mechanics • Belt drives • Balancing • Miscellaneous machine elements • Automobile mechanics • Vibrations • Friction • Brakes and clutches • Bearings • Gears

Thermodynamics and heat transfer: Heat • Perfect gases • Properties of vapours • Data tables • Flow through nozzles • Steam plant • Steam turbines • Gas turbines • Heat engine cycles • Reciprocating spark ignition i.e. engines • Air compressors • Reciprocating air motor • Refrigerators • Heat exchangers • Combustion of fuels

Fluid mechanics: Hydrostatics • Flow of liquids in pipes and ducts • Flow of liquids through various devices • Viscosity and laminar flow • Fluid jets • Flow of gases • Fluid machines

Manufacturing technology: General characteristics of metal processes • Machining processes • Turning • Drills and reamers • Milling • Grinding • Cutting tool materials • Cutting fluids • Cost of machining • General information on metal cutting • Casting • Metal forming processes • Forging • Deep drawing • Extrusion • Impact extrusion • Press work • Sheet metal work • Rolling • Metal joining processes • Soldering and brassing • Welding • Limits and fits

Engineering materials: Ferrous metals • Non-ferrous metals • Miscellaneous metals • Plastics • Elastomers • Wood • Adhesives • Composites • Ceramics • Cements • Materials for special requirements • Miscellaneous information

Engineering measurements: Length measurement • Angle measurement • Strain measurement • Temperature measurement • Pressure measurement • Flow measurement • Velocity measurement • Rotational speed measurement • Materials testing measurement

General data: Units and symbols • Fasteners • Engineering stock • Miscellaneous data • Glossary • Index

An imprint of Elsevier Science

www.bh.com